Download Free Management Of Radioactive Waste Book in PDF and EPUB Free Download. You can read online Management Of Radioactive Waste and write the review.

The safe management of radioactive wastes is of paramount importance in gaining both governmental and societal support for nuclear energy. The scope of this new textbook is to provide a comprehensive perspective on all types of radioactive wastes as to how they are created, classified, characterized, and disposed.Written to emphasize how geology and radionuclide chemistry impact waste management, this book is primarily designed for engineers who have little background in geology with low-level wastes, decommissioning wastes, high-level wastes and spent nuclear fuel.This textbook provides the most up-to-date information available on waste management in several countries. The content of this work includes transporting radioactive materials to disposal facilities. The textbook cites numerous case studies to illustrate past practices, current methodologies and to provide insights on how radioactive wastes may be managed in the future. An international perspective on waste management is also provided to help the readers better understand the diversity in approaches while highlighting what many countries have in common. Review questions for classroom use are provided at the end of each chapter.Related Link(s)
Radioactive waste management and contaminated site clean-up reviews radioactive waste management processes, technologies, and international experiences. Part one explores the fundamentals of radioactive waste including sources, characterisation, and processing strategies. International safety standards, risk assessment of radioactive wastes and remediation of contaminated sites and irradiated nuclear fuel management are also reviewed. Part two highlights the current international situation across Africa, Asia, Europe, and North America. The experience in Japan, with a specific chapter on Fukushima, is also covered. Finally, part three explores the clean-up of sites contaminated by weapons programmes including the USA and former USSR. Radioactive waste management and contaminated site clean-up is a comprehensive resource for professionals, researchers, scientists and academics in radioactive waste management, governmental and other regulatory bodies and the nuclear power industry. Explores the fundamentals of radioactive waste including sources, characterisation, and processing strategies Reviews international safety standards, risk assessment of radioactive wastes and remediation of contaminated sites and irradiated nuclear fuel management Highlights the current international situation across Africa, Asia, Europe, and North America specifically including a chapter on the experience in Fukushima, Japan
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
This Safety Guide is applicable to the predisposal management of radioactive waste derived from the use of radioactive materials in medicine, industry, agriculture, research and education, including disused sealed radioactive sources. It focuses on waste generated at facilities such as hospitals and research centres, where radioactive waste is not usually generated in bulk quantities. It covers the managerial, administrative and technical issues associated with the safe management of radioactive waste, from its generation to its acceptance at a disposal facility or its release from regulatory control.
This reviews sources of radioactive waste and introduces radioactive decay and radiation shielding calculations. It covers technical and regulatory aspects of waste management with discussion questions at the end of each chapter to provide an opportunity to explore the many facets of waste management issues. An extensive reference list at the end of each chapter retains the references from the first edition of the book and incorporates references used in preparing this revised text, giving readers an opportunity to look at historical records as well as current information.
Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.
The largest volumes of radioactive wastes in the United States contain only small amounts of radioactive material. These low-activity wastes (LAW) come from hospitals, utilities, research institutions, and defense installations where nuclear material is used. Millions of cubic feet of LAW also arise every year from non-nuclear enterprises such as mining and water treatment. While LAW present much less of a radiation hazard than spent nuclear fuel or high-level radioactive wastes, they can cause health risks if controlled improperly. Improving the Regulation and Management of Low-Activity Radioactive Wastes asserts that LAW should be regulated and managed according to the degree of risk they pose for treatment, storage, and disposal. Current regulations are based primarily on the type of industry that produced the waste-the waste's origin-rather than its risk. In this report, a risk-informed approach for regulating and managing all types of LAW in the United States is proposed. Implemented in a gradual or stepwise fashion, this approach combines scientific risk assessment with public values and perceptions. It focuses on the hazardous properties of the waste in question and how they compare with other waste materials. The approach is based on established principles for risk-informed decision making, current risk-informed initiatives by waste regulators in the United States and abroad, solutions available under current regulatory authorities, and remedies through new legislation when necessary.
Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard. Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes. With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment
This book lays a comprehensive foundation for addressing the issue of safety in the lifecycle of nuclear waste. With the focus on the fundamental principles, the book covers key technical approaches to safety in the management of spent nuclear fuel, reprocessed high-level waste, low-level waste, and decommissioning wastes. Behaviors of nuclear waste in natural and engineered systems in relation to safety assessment are also described through the explanation of fundamental processes. For any country involved with the use of nuclear power, nuclear waste management is a topic of grave importance. Although many countries have heavily invested in nuclear waste management, having a successful national program still remains a major challenge. This book offers substantial guidance for those seeking solutions to these problems. As the problem of nuclear waste management is heavily influenced by social factors, the connection between technical and social issues in nuclear waste management is also discussed. The book is a core text for advanced students in nuclear and environmental engineering, and a valuable reference for those working in nuclear engineering and related areas.
Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies. * Each chapter focuses on a different matrix used in nuclear waste immobilisation: Cement, bitumen, glass and new materials. * Keeps the most important issues surrounding nuclear waste – such as treatment schemes and technologies, and disposal - at the forefront.