Download Free Management And Utilization Of Remote Sensing Data Book in PDF and EPUB Free Download. You can read online Management And Utilization Of Remote Sensing Data and write the review.

Advances in spatial, spectral, and temporal resolution over the past several years have greatly expanded opportunities for practical applications of remote sensing data. To explore the implications of these possibilities, the NRC held a series of three workshops on different facets of remote sensing applications. This report is on the third of those workshops: the development and use of remote sensing data and information by state, local, and regional governments. The steering committee was asked to examine the opportunities, potential challenges, and policy issues associated with the application of remote sensing data in the public sector including approaches and procedures for government agencies to use such data and barriers to development and use of the applications. The resulting report is addressed primarily to non-technical managers and decisions makers at all levels of government below the federal level.
Water systems are building blocks for poverty alleviation, shared growth, sustainable development, and green growth strategies. They require data from in-situ observation networks. Budgetary and other constraints have taken a toll on their operation and there are many regions in the world where the data are scarce or unreliable. Increasingly, remote sensing satellite-based earth observation is becoming an alternative. This book briefly describes some key global water challenges, perspectives for remote sensing approaches, and their importance for water resources-related activities. It describes eight key types of water resources management variables, a list of sensors that can produce such information, and a description of existing data products with examples. Earth Observation for Water Resources Management provides a series of practical guidelines that can be used by project leaders to decide whether remote sensing may be useful for the problem at hand and suitable data sources to consider if so. The book concludes with a review of the literature on reliability statistics of remote-sensed estimations.
Over the past decade renewed interest in practical applications of Earth observations from space has coincided with and been fueled by significant improvements in the availability of remote sensing data and in their spectral and spatial resolution. In addition, advances in complementary spatial data technologies such as geographic information systems and the Global Positioning System have permitted more varied uses of the data. During the same period, the institutions that produce remote sensing data have also become more diversified. In the United States, satellite remote sensing was until recently dominated largely by federal agencies and their private sector contractors. However, private firms are increasingly playing a more prominent role, even a leadership role, in providing satellite remote sensing data, through either public-private partnerships or the establishment of commercial entities that serve both government and private sector Earth observation needs. In addition, a large number of private sector value-adding firms have been established to work with end users of the data. These changes, some technological, some institutional, and some financial, have implications for new and continuing uses of remote sensing data. To gather data for exploring the importance of these changes and their significance for a variety of issues related to the use of remote sensing data, the Space Studies Board initiated a series of three workshops. The first, "Moving Remote Sensing from Research to Applications: Case Studies of the Knowledge Transfer Process," was held in May 2000. This report draws on data and information obtained in the workshop planning meeting with agency sponsors, information presented by workshop speakers and in splinter group discussions, and the expertise and viewpoints of the authoring Steering Committee on Space Applications and Commercialization. The recommendations are the consensus of the steering committee and not necessarily of the workshop participants.
Remote sensing stands as the defining technology in our ability to monitor coral reefs, as well as their biophysical properties and associated processes, at regional to global scales. With overwhelming evidence that much of Earth’s reefs are in decline, our need for large-scale, repeatable assessments of reefs has never been so great. Fortunately, the last two decades have seen a rapid expansion in the ability for remote sensing to map and monitor the coral reef ecosystem, its overlying water column, and surrounding environment. Remote sensing is now a fundamental tool for the mapping, monitoring and management of coral reef ecosystems. Remote sensing offers repeatable, quantitative assessments of habitat and environmental characteristics over spatially extensive areas. As the multi-disciplinary field of coral reef remote sensing continues to mature, results demonstrate that the techniques and capabilities continue to improve. New developments allow reef assessments and mapping to be performed with higher accuracy, across greater spatial areas, and with greater temporal frequency. The increased level of information that remote sensing now makes available also allows more complex scientific questions to be addressed. As defined for this book, remote sensing includes the vast array of geospatial data collected from land, water, ship, airborne and satellite platforms. The book is organized by technology, including: visible and infrared sensing using photographic, multispectral and hyperspectral instruments; active sensing using light detection and ranging (LiDAR); acoustic sensing using ship, autonomous underwater vehicle (AUV) and in-water platforms; and thermal and radar instruments. Emphasis and Audience This book serves multiple roles. It offers an overview of the current state-of-the-art technologies for reef mapping, provides detailed technical information for coral reef remote sensing specialists, imparts insight on the scientific questions that can be tackled using this technology, and also includes a foundation for those new to reef remote sensing. The individual sections of the book include introductory overviews of four main types of remotely sensed data used to study coral reefs, followed by specific examples demonstrating practical applications of the different technologies being discussed. Guidelines for selecting the most appropriate sensor for particular applications are provided, including an overview of how to utilize remote sensing data as an effective tool in science and management. The text is richly illustrated with examples of each sensing technology applied to a range of scientific, monitoring and management questions in reefs around the world. As such, the book is broadly accessible to a general audience, as well as students, managers, remote sensing specialists and anyone else working with coral reef ecosystems.
The ability to anticipate the impacts of global environmental changes on natural resources is fundamental to designing appropriate and optimised adaptation and mitigation strategies. However, this requires the scientific community to have access to reliable, large-scale information on spatio-temporal changes in the distribution of abiotic conditions and on the distribution, structure, composition, and functioning of ecosystems. Satellite remote sensing can provide access to some of this fundamental data by offering repeatable, standardised, and verifiable information that is directly relevant to the monitoring and management of our natural capital. This book demonstrates how ecological knowledge and satellite-based information can be effectively combined to address a wide array of current natural resource management needs. By focusing on concrete applied examples in both the marine and terrestrial realms, it will help pave the way for developing enhanced levels of collaboration between the ecological and remote sensing communities, as well as shaping their future research directions. Satellite Remote Sensing and the Management of Natural Resources is primarily aimed at ecologists and remote sensing specialists, as well as policy makers and practitioners in the fields of conservation biology, biodiversity monitoring, and natural resource management.
Effectively Manage Wetland Resources Using the Best Available Remote Sensing TechniquesUtilizing top scientists in the wetland classification and mapping field, Remote Sensing of Wetlands: Applications and Advances covers the rapidly changing landscape of wetlands and describes the latest advances in remote sensing that have taken place over the pa
Particularly about forests in the USA.
How to use remote sensing technology as geographic data is demonstrated, as is how remote sensing products are the perfect complement to GIS-based analysis in industries such as emergency response, meteorology, water resources, land use and urban planning.
This book offers a comprehensive overview of progress in the general area of fluvial remote sensing with a specific focus on its potential contribution to river management. The book highlights a range of challenging issues by considering a range of spatial and temporal scales with perspectives from a variety of disciplines. The book starts with an overview of the technical progress leading to new management applications for a range of field contexts and spatial scales. Topics include colour imagery, multi-spectral and hyper-spectral imagery, video, photogrammetry and LiDAR. The book then discusses management applications such as targeted, network scale, planning, land-use change modelling at catchment scales, characterisation of channel reaches (riparian vegetation, geomorphic features) in both spatial and temporal dimensions, fish habitat assessment, flow measurement, monitoring river restoration and maintenance and, the appraisal of human perceptions of riverscapes. Key Features: • A specific focus on management applications in a period of increasing demands on managers to characterize river features and their evolution at different spatial scales • An integration across all scales of imagery with a clear discussion of both ground based and airborne images • Includes a wide-range of environmental problems • Coverage of cutting-edge technology • Contributions from leading researchers in the field
The scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Big Data Analytics for Satellite Image Processing and Remote Sensing is a critical scholarly resource that examines the challenges and difficulties of implementing big data in image processing for remote sensing and related areas. Featuring coverage on a broad range of topics, such as distributed computing, parallel processing, and spatial data, this book is geared towards scientists, professionals, researchers, and academicians seeking current research on the use of big data analytics in satellite image processing and remote sensing.