Download Free Making Sense Of Complexity Book in PDF and EPUB Free Download. You can read online Making Sense Of Complexity and write the review.

On April 26-28, 2001, the Board on Mathematical Sciences and Their Applications (BMSA) and the Board on Life Sciences of the National Research Council cosponsored a workshop on the dynamical modeling of complex biomedical systems. The workshop's goal was to identify some open research questions in the mathematical sciences whose solution would contribute to important unsolved problems in three general areas of the biomedical sciences: disease states, cellular processes, and neuroscience. The workshop drew a diverse group of over 80 researchers, who engaged in lively discussions. To convey the workshop's excitement more broadly, and to help more mathematical scientists become familiar with these very fertile interface areas, the BMSA appointed one of its members, George Casella, of the University of Florida, as rapporteur. He developed this summary with the help of two colleagues from his university, Rongling Wu and Sam S. Wu, assisted by Scott Weidman, BMSA director. This summary represents the viewpoint of its authors only and should not be taken as a consensus report of the BMSA or of the National Research Council.
This book explores the interdisciplinary field of complex systems theory. By the end of the book, readers will be able to understand terminology that is used in complex systems and how they are related to one another; see the patterns of complex systems in practical examples; map current topics, in a variety of fields, to complexity theory; and be able to read more advanced literature in the field. The book begins with basic systems concepts and moves on to how these simple rules can lead to complex behavior. The author then introduces non-linear systems, followed by pattern formation, and networks and information flow in systems. Later chapters cover the thermodynamics of complex systems, dynamical patterns that arise in networks, and how game theory can serve as a framework for decision making. The text is interspersed with both philosophical and quantitative arguments, and each chapter ends with questions and prompts that help readers make more connections. “The text provides a useful overview of complex systems, with enough detail to allow a reader unfamiliar with the topic to understand the basics. The book stands out for its comprehensiveness and approachability. It will be particularly useful as a text for introductory physics courses. Tranquillo’s strength is in delivering a vast amount of information in a succinct manner.... A reader can find information quickly and efficiently—that is, in my opinion, the book’s greatest value.” (Stefani Crabtree, Physics Today)
Contents 11. 2. 2. Four Main Areas of Dispute 247 11. 2. 3. Summary . . . 248 11. 3. Making Sense of the Issues . . 248 11. 3. 1. Introduction . . . . 248 11. 3. 2. The Scientific Approach 248 11. 3. 3. Science and Matters of Society . 249 11. 3. 4. Summary . 251 11. 4. Tying It All Together . . . . 251 11. 4. 1. Introduction . . . . 251 11. 4. 2. A Unifying Framework 251 11. 4. 3. Critical Systems Thinking 253 11. 4. 4. Summary 254 11. 5. Conclusion 254 Questions . . . 255 REFERENCES . . . . . . . . . . . . . . . . . . . 257 INDEX . . . . . . . . . . . . . . . . . . . . . . 267 Chapter One SYSTEMS Origin and Evolution, Terms and Concepts 1. 1. INTRODUCTION We start this book with Theme A (see Figure P. I in the Preface), which aims to develop an essential and fundamental understanding of systems science. So, what is systems science? When asked to explain what systems science is all about, many systems scientists are confronted with a rather daunting task. The discipline tends to be presented and understood in a fragmented way and very few people hold an overview understanding of the subject matter, while also having sufficient in-depth competence in many and broad-ranging subject areas where the ideas are used. Indeed, it was precisely this difficulty that identified the need for a comprehensive well-documented account such as is presented here in Dealing with Complexity.
Chaos and complexity are the new buzz words in both science and contemporary society. The ideas they represent have enormous implications for the way we understand and engage with the world. Complexity Theory and the Social Sciences introduces students to the central ideas which surround the chaos/complexity theories. It discusses key concepts before using them as a way of investigating the nature of social research. By applying them to such familiar topics as urban studies, education and health, David Byrne allows readers new to the subject to appreciate the contribution which complexity theory can make to social research and to illuminating the crucial social issues of our day.
The new branch of science which will reveal how to avoid the rush hour, overcome cancer, and find the perfect date What do traffic jams, stock market crashes, and wars have in common? They are all explained using complexity, an unsolved puzzle that many researchers believe is the key to predicting - and ultimately solving - everything from terrorist attacks and pandemic viruses right down to rush hour traffic congestion. Complexity is considered by many to be the single most important scientific development since general relativity and promises to make sense of no less than the very heart of the Universe. Using it, scientists can find order emerging from seemingly random interactions of all kinds, from something as simple as flipping coins through to more challenging problems such as predicting shopping habits, the patterns in modern jazz, and the growth of cancer tumours.
“If you liked Chaos, you’ll love Complexity. Waldrop creates the most exciting intellectual adventure story of the year” (The Washington Post). In a rarified world of scientific research, a revolution has been brewing. Its activists are not anarchists, but rather Nobel Laureates in physics and economics and pony-tailed graduates, mathematicians, and computer scientists from all over the world. They have formed an iconoclastic think-tank and their radical idea is to create a new science: complexity. They want to know how a primordial soup of simple molecules managed to turn itself into the first living cell—and what the origin of life some four billion years ago can tell us about the process of technological innovation today. This book is their story—the story of how they have tried to forge what they like to call the science of the twenty-first century. “Lucidly shows physicists, biologists, computer scientists and economists swapping metaphors and reveling in the sense that epochal discoveries are just around the corner . . . [Waldrop] has a special talent for relaying the exhilaration of moments of intellectual insight.” —The New York Times Book Review “Where I enjoyed the book was when it dove into the actual question of complexity, talking about complex systems in economics, biology, genetics, computer modeling, and so on. Snippets of rare beauty here and there almost took your breath away.” —Medium “[Waldrop] provides a good grounding of what may indeed be the first flowering of a new science.” —Publishers Weekly
This book provides an introduction to the role of diversity in complex adaptive systems. A complex system--such as an economy or a tropical ecosystem--consists of interacting adaptive entities that produce dynamic patterns and structures. Diversity plays a different role in a complex system than it does in an equilibrium system, where it often merely produces variation around the mean for performance measures. In complex adaptive systems, diversity makes fundamental contributions to system performance. Scott Page gives a concise primer on how diversity happens, how it is maintained, and how it affects complex systems. He explains how diversity underpins system level robustness, allowing for multiple responses to external shocks and internal adaptations; how it provides the seeds for large events by creating outliers that fuel tipping points; and how it drives novelty and innovation. Page looks at the different kinds of diversity--variations within and across types, and distinct community compositions and interaction structures--and covers the evolution of diversity within complex systems and the factors that determine the amount of maintained diversity within a system. Provides a concise and accessible introduction Shows how diversity underpins robustness and fuels tipping points Covers all types of diversity The essential primer on diversity in complex adaptive systems
In Complexity and Postmodernism, Paul Cilliers explores the idea of complexity in the light of contemporary perspectives from philosophy and science. Cilliers offers us a unique approach to understanding complexity and computational theory by integrating postmodern theory (like that of Derrida and Lyotard) into his discussion. Complexity and Postmodernism is an exciting and an original book that should be read by anyone interested in gaining a fresh understanding of complexity, postmodernism and connectionism.
The Industrial Revolution provided many tools that have made our current way of life possible. With over 100 years of success, they became the assumed, natural, "correct" ways to make change happen. For all of the benefits those tools offer, they are no longer sufficient to address today's complex systems and organizations. There are too many variables; too many changes happening too quickly; too much change -- to believe every issue can be deconstructed, decomposed, analyzed, prioritized, and the "one best, guaranteed way" implemented to address all of that complexity. We believe an additional set of concepts and tools is required to make sense of this complexity. We've named them the "Complexity Space Framework" and believe it offers a new lens for teams and organizations looking to survive and prosper in a complex world."