Download Free Major Accomplishments In Composite Materials And Sandwich Structures Book in PDF and EPUB Free Download. You can read online Major Accomplishments In Composite Materials And Sandwich Structures and write the review.

This book collects major research contributions in composite materials and sandwich structures supported by the U.S. Office of Naval Research. It contains over thirty chapters written by experts and serves as a reference and guide for future research.
Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, Second Edition reviews various aspects of dynamic deformation, damage and fracture, mostly in composite laminates and sandwich structures, and in a broad range of application areas including aerospace, automotive, defense and sports engineering. This book examines low- and high-velocity loading and assesses shock, blast and penetrative events, and has been updated to cover important new developments such as the use of additive manufacturing to produce composites, including fiber-reinforced ones. New microstructural, experimental, theoretical, and numerical studies with advanced tools are included as well. The book also features four new chapters covering topics such as dynamic delamination, dynamic deformation and fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting. - Examines dynamic deformation and fracture of composite materials, covering experimental, analytical and numerical aspects - Features four new chapters covering topics such as dynamic interfacial fracture, fracture in 3D-printed composites, ballistic impacts with fragmenting projectiles, and the effect of multiple impacting - Addresses important application areas such as aerospace, automotive, wind energy, defense and sports
This book treats the mechanical behavior of one-dimensional sandwich structures, a typicaloncept in the context of lightweight design. Such structures are composed of different constituent (e.g., layers) in order to achieve overall properties, which are better than for a single component alone. This book covers the basic mechanical load cases, i.e., tension/compression, bending, and shear. Based on this knowledge, different failure modes, i.e., plastic yielding, and global and local instabilities are investigated. In addition, an introduction to classic optimization problems, i.e., the formulation of an objective function (e.g., the weight of a structure) and corresponding restrictions, is included. The consideration here is limited to one- or two-dimensional design spaces, i.e., with a maximum of two design variables. For such simple cases, the minimum of the objective function can often be determined using analytical or graphical methods.
The marine environment presents significant challenges for materials due to the potential for corrosion by salt water, extreme pressures when deeply submerged and high stresses arising from variable weather. Well-designed fibre-reinforced composites can perform effectively in the marine environment and are lightweight alternatives to metal components and more durable than wood. Marine Applications of Advanced Fibre-Reinforced Composites examines the technology, application and environmental considerations in choosing a fibre-reinforced composite system for use in marine structures. This book is divided into two parts. The chapters in Part One explore the manufacture, mechanical behavior and structural performance of marine composites, and also look at the testing of these composites and end of life environmental considerations. The chapters in Part Two then investigate the applications of marine composites, specifically for renewable energy devices, offshore oil and gas applications, rigging and sails. Underwater repair of marine composites is also reviewed. - Comprehensively examines all aspects of fibre-reinforced marine composites, including the latest advances in design, manufacturing methods and performance - Assesses the environmental impacts of using fibre-reinforced composites in marine environments, including end of life considerations - Reviews advanced fibre-reinforced composites for renewable energy devices, rigging, sail textiles, sail shape optimisation and offshore oil and gas applications
A composite sandwich panel is a hybrid material made up of constituents such as a face sheet, a core, and adhesive film for bonding the face sheet and core together. Advances in materials have provided designers with several choices for developing sandwich structures with advanced functionalities. The selection of a material in the sandwich construction is based on the cost, availability, strength requirements, ease of manufacturing, machinability, and post-manufacturing process requirements. Sandwich Composites: Fabrication and Characterization provides insights into composite sandwich panels based on the material aspects, mechanical properties, defect characterization, and secondary processes after the fabrication, such as drilling and repair. FEATURES Outlines existing fabrication methods and various materials aspects Examines composite sandwich panels made of different face sheets and core materials Covers the response of composite sandwich panels to static and dynamic loads Describes parameters governing the drilling process and repair procedures Discusses the applications of composite sandwich panels in various fields Explores the role of 3D printing in the fabrication of composite sandwich panels Due to the wide scope of the topics covered, this book is suitable for researchers and scholars in the research and development of composite sandwich panels. This book can also be used as a reference by professionals and engineers interested in understanding the factors governing the material properties, material response, and the failure behavior under various mechanical loads.
Dynamic Response and Failure of Composite Materials and Structures presents an overview of recent developments in a specialized area of research with original contributions from the authors who have been asked to outline needs for further investigations in their chosen topic area. The result is a presentation of the current state-of-the art in very specialized research areas that cannot be found elsewhere in the literature. For example, Massabò presents a newly developed theory for laminated composite plates that accounts for imperfect bonding between layers with new solutions for problems involving thermal effects. This theory is new and computationally-efficient, and the author describes how it fits in the broader context of composite plate theory. Abrate discusses the design of composite marine propellers and presents a detailed derivation of the equations of motion of a rotating blade, including centrifugal effects and the effects of pre-twisting and other geometric parameters. This book is a major reference resource for academic and industrial researchers and designers working in aerospace, automotives, and the marine engineering industry. - Presents recent developments in a research field that has experienced tremendous advances because of improved computational capabilities, new materials, and new testing facilities - Includes contributions from leading researchers from Europe and the USA who present the current state-of-the-art, including unique and original research - Provides extensive experimental results and numerical solutions - Appeals to a broad range of professional researchers working in aerospace, automotive, and marine engineering fields
Protecting the natural environment and promoting sustainability have become important objectives, but achieving such goals presents myriad challenges for even the most committed environmentalist. American Environmentalism: Philosophy, History, and Public Policy examines whether competing interests can be reconciled while developing consistent, coherent, effective public policy to regulate uses and protection of the natural environment without destroying the national economy. It then reviews a range of possible solutions. The book delves into key normative concepts that undergird American perspectives on nature by providing an overview of philosophical concepts found in the western intellectual tradition, the presuppositions inherent in neoclassical economics, and anthropocentric (human-centered) and biocentric (earth-centered) positions on sustainability. It traces the evolution of attitudes about nature from the time of the Ancient Greeks through Europeans in the Middle Ages and the Renaissance, the Enlightenment and the American Founders, the nineteenth and twentieth centuries, and up to the present. Building on this foundation, the author examines the political landscape as non-governmental organizations (NGOs), industry leaders, and government officials struggle to balance industrial development with environmental concerns. Outrageous claims, silly misrepresentations, bogus arguments, absurd contentions, and overblown prophesies of impending calamities are bandied about by many parties on all sides of the debate—industry spokespeople, elected representatives, unelected regulators, concerned citizens, and environmental NGOs alike. In lieu of descending into this morass, the author circumvents the silliness to explore the crucial issues through a more focused, disciplined approach. Rather than engage in acrimonious debate over minutiae, as so often occurs in the context of "green" claims, he recasts the issue in a way that provides a cohesive look at all sides. This effort may be quixotic, but how else to cut the Gordian knot?
This book offers a comprehensive and in-depth exploration of the most widely used test methods for characterizing the deformation and failure behavior of materials. It presents a thorough treatise on mechanical testing, providing a valuable resource for researchers, engineers, and students seeking to understand the mechanical properties and performance of materials across various applications. The book is organized into ten chapters dedicated to specific test methods including tensile, compression, bending, torsion, multiaxial, indentation, fracture, fatigue, creep, high strain rates, nondestructive evaluation, ensuring a thorough examination of each technique's principles, procedures, and applications. It features two special chapters focusing specifically on the mechanical characterization of concrete and fiber composite materials. These chapters delve into the unique aspects and challenges associated with testing and analyzing these specific materials.
Explosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to the extensive use of composites in applications where explosive blasts are an ever-present threat, such as military aircraft, armoured vehicles, naval ships and submarines, body armour, and other defense applications. In addition, the growing use of IEDs and other types of bombs used by terrorists to attack civilian and military targets highlights the need for this book. Many terrorist attacks occur in subways, trains, buses, aircraft, buildings, and other civil infrastructure made of composite materials. Designers, engineers and terrorist experts need the essential information to protect civilians, military personnel, and assets from explosive blasts. - Focuses on key aspects, including both modeling, analysis, and experimental work - Written by leading international experts from academia, defense agencies, and other organizations - Timely book due to the extensive use of composites in areas where explosive blasts are an ever-present threat in military applications