Download Free Mait Cells Book in PDF and EPUB Free Download. You can read online Mait Cells and write the review.

This volume focuses on various methods used by researchers to study mucosal-associated invariant T (MAIT) cells in the aspects described below. The chapters are organized into Four Parts: part One looks at the function and importance of MAIT cells in health and disease. It covers methods to isolate and characterize MAIT cells from human tissues including liver, colon tumors, placenta and decidua, and endometrium. Part Two discusses MR1 independent stimulation, and looks at the activation of MAIT cells by different stimulatory agents. Part Three describes various methods to develop tools to analyze, monitor, and generate MAIT cells in vitro, including the production of MR1-tetramers and how they can be loaded with bacterial antigens and used for the detection of MAIT cells. The last part covers the use of murine models to study MAIT cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and comprehensive, MAIT Cells: Methods and Protocols is a valuable resource for anyone interested in learning more about this developing field. Chapters 9 and 17 are open access under a CC BY 4.0 license.
This book focusses on the latest results related to the field of bile acids as signaling molecules and describes how these receptors have become a major pharmacological target. It covers all major areas of research in this field, from genetics, chemistry, in silico modeling, molecular biology to clinical applications, offering a cross-country view of the functional role of bile acids as signaling molecules, virtually acting on all major areas of metabolism. While FXR and GPBAR1 are essential bile acid sensors that integrate the de novo bile acid synthesis with intestinal microbiota and liver metabolism, in a broader sense, BARs play a pathogenic role in the development of common human alignments including liver, intestinal and metabolic disorders, such as steatosis (NAFLD) and steato-hepatitis (NASH), diabetes, obesity and atherosclerosis.
This volume provides current and new advanced methods and protocols to study T cells. Chapters guide readers through T cell diversity using mass cytometry, analyzing T cells from single cell level, CRISPR/Cas9 techniques to study the T cell activation, techniques to study subsets of Tcell’s, procedures to study artificial antigen presentosomes for T cell activation, techniques to study the T cell development, two-photon microscopy, and MAIT cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, T-Cell Receptor Signaling: Methods and Protocols aims to provide a wide range of approaches and be an invaluable resource for present and future generations of T cell researchers.
This comprehensive, authoritative treatise covers all aspects of mucosal vaccines including their development, mechanisms of action, molecular/cellular aspects, and practical applications. The contributing authors and editors of this one-of-a-kind book are very well known in their respective fields. Mucosal Vaccines is organized in a unique format in which basic, clinical, and practical aspects of the mucosal immune system for vaccine development are described and discussed. This project is endorsed by the Society for Mucosal Immunology. - Provides the latest views on mucosal vaccines - Applies basic principles to the development of new vaccines - Links basic, clinical, and practical aspects of mucosal vaccines to different infectious diseases - Unique and user-friendly organization
T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.
Infections are among the most frequent complications in patients with hematological malignancies and in those undergoing high-dose chemotherapy and autologous hematopoietic stem cell transplantation. A profound knowledge on the epidemiology, diagnostic approaches, treatment modalities and prophylactic strategies is essential for the clinical management of these complications in patients who are often severely immunocompromised owing to their underlying diseases and in particular, the intensive myelosuppressive chemo and immunotherapy. This textbook provides a clinically oriented, compact and up-to-date overview on infections in hematology patients and their management. The typical pathogens to be considered in different subgroups of patients are identified and further aspects of the microbiological background are explored. Clinical, imaging, and laboratory-based diagnostic techniques are discussed and therapeutic strategies appropriate to different situations are then presented, with due attention to the pitfalls, toxicities and interactions that can arise during antimicrobial treatment. Strategies to prevent infection are also outlined, encompassing antimicrobial prophylaxis, isolation procedures, hospital hygiene, protective immunization and the use of hematopoietic growth factors.
Revealing essential roles of the tumor microenvironment in cancer progression, this book focuses on the role of hematopoietic components of the tumor microenvironment. Further, it teaches readers about the roles of distinct constituents of the tumor microenvironment and how they affect cancer development. Topics include neutrophils, basophils, T helper cells, cytotoxic lymphocytes, fibrocytes, and myeloid-derived suppressor cells, and more. Taken alongside its companion volumes, these books update us on what we know about various aspects of the tumor microenvironment as well as future directions. Tumor Microenvironment: Hematopoietic Cells – Part A is essential reading for advanced cell biology and cancer biology students as well as researchers seeking an update on research in the tumor microenvironment.
CD1 and MR1 are major histocompatibility complex (MHC) class I-related proteins that bind and present non-peptide antigens to subsets of T cells with specialized functions. CD1 proteins typically present lipid antigens to CD1-restricted T cells, whereas MR1 presents vitamin B-based ligands and a variety of drugs and drug-like molecules to MR1-restricted T cells. The CD1 family of antigen presenting molecules has been divided into two groups: Group 1 contains CD1a, CD1b and CD1c, and Group 2 contains CD1d. Additionally, CD1e is expressed intracellularly and is involved in the loading of lipid antigens onto Group 1 CD1 proteins. Humans express both Groups 1 and 2 CD1 proteins, whereas mice only express CD1d. Group 1 CD1 proteins present lipid antigens to T cells that generally express diverse T cell receptors (TCRs) and exhibit adaptive-like functions, whereas CD1d presents lipid antigens to subsets of T cells that express either diverse or highly restricted TCRs and exhibit innate-like functions. CD1d-restricted T cells are called natural killer T (NKT) cells, which includes Type I or invariant NKT (iNKT) cells expressing semi-invariant TCRs, and Type II NKT cells expressing more diverse TCRs. CD1-restricted T cells have been implicated in a wide variety of diseases, including cancer, infections, and autoimmune, inflammatory and metabolic diseases. Additionally, NKT cells have been targeted for immunotherapy of disease with ligands such as α-galactosylceramide for iNKT cells, or sulfatide for Type II NKT cells. Like iNKT cells, MR1-restricted T cells express semi-invariant TCRs and display innate-like functions. MR1-restricted T cells, also called mucosal-associated invariant T (MAIT) cells, have been implicated in immune responses against a variety of pathogens such as Mycobacterium tuberculosis, Pseudomonas aeruginosa, Helicobacter pylori, hepatitis C virus and influenza virus. Moreover, these cells contribute to autoimmune and inflammatory diseases, including colitis, rheumatoid arthritis, psoriasis, lupus, and diabetes.
This is the second volume in the series, the Role of CD1- and MR1-restricted T cells in Immunity and Disease. Please see volume I here. CD1 and MR1 are major histocompatibility complex (MHC) class I-related proteins that bind and present non-peptide antigens to subsets of T cells with specialized functions. CD1 proteins typically present lipid antigens to CD1-restricted T cells, whereas MR1 presents vitamin B-based ligands and a variety of drugs and drug-like molecules to MR1-restricted T cells. The CD1 family of antigen-presenting molecules has been divided into two groups: Group 1 contains CD1a, CD1b, and CD1c, and Group 2 contains CD1d. Additionally, CD1e is expressed intracellularly and is involved in the loading of lipid antigens onto Group 1 CD1 proteins. Humans express both Groups 1 and 2 CD1 proteins, whereas mice only express CD1d. Group 1 CD1 proteins present lipid antigens to T cells that generally express diverse T cell receptors (TCRs) and exhibit adaptive-like functions, whereas CD1d presents lipid antigens to subsets of T cells that express either diverse or highly restricted TCRs and exhibit innate-like functions. CD1d-restricted T cells are called natural killer T (NKT) cells, which include Type I or invariant NKT (iNKT) cells expressing semi-invariant TCRs, and Type II NKT cells expressing more diverse TCRs. CD1-restricted T cells have been implicated in a wide variety of diseases, including cancer, infections, and autoimmune, inflammatory, and metabolic diseases. Additionally, NKT cells have been targeted for immunotherapy of disease with ligands such as ‎α or α-galactosylceramide for iNKT cells, or sulfatide for Type II NKT cells.