Download Free Maintaining Earths Oceans Book in PDF and EPUB Free Download. You can read online Maintaining Earths Oceans and write the review.

Earth's oceans cover almost three-fourths of the planet's surface. They sustain an array of life, provide food, affect climate, and provide for recreation, exploration, and trade. However, their beauty and power is compromised every day by human interference. In Maintaining Earth's Oceans, explore the constraints placed upon the great seas and the measures being taken to protect them. Book jacket.
The ocean is an integral component of the Earth's climate system. It covers about 70% of the Earth's surface and acts as its primary reservoir of heat and carbon, absorbing over 90% of the surplus heat and about 30% of the carbon dioxide associated with human activities, and receiving close to 100% of fresh water lost from land ice. With the accumulation of greenhouse gases in the atmosphere, notably carbon dioxide from fossil fuel combustion, the Earth's climate is now changing more rapidly than at any time since the advent of human societies. Society will increasingly face complex decisions about how to mitigate the adverse impacts of climate change such as droughts, sea-level rise, ocean acidification, species loss, changes to growing seasons, and stronger and possibly more frequent storms. Observations play a foundational role in documenting the state and variability of components of the climate system and facilitating climate prediction and scenario development. Regular and consistent collection of ocean observations over decades to centuries would monitor the Earth's main reservoirs of heat, carbon dioxide, and water and provides a critical record of long-term change and variability over multiple time scales. Sustained high-quality observations are also needed to test and improve climate models, which provide insights into the future climate system. Sustaining Ocean Observations to Understand Future Changes in Earth's Climate considers processes for identifying priority ocean observations that will improve understanding of the Earth's climate processes, and the challenges associated with sustaining these observations over long timeframes.
The ocean is an integral component of the Earth's climate system. It covers about 70% of the Earth's surface and acts as its primary reservoir of heat and carbon, absorbing over 90% of the surplus heat and about 30% of the carbon dioxide associated with human activities, and receiving close to 100% of fresh water lost from land ice. With the accumulation of greenhouse gases in the atmosphere, notably carbon dioxide from fossil fuel combustion, the Earth's climate is now changing more rapidly than at any time since the advent of human societies. Society will increasingly face complex decisions about how to mitigate the adverse impacts of climate change such as droughts, sea-level rise, ocean acidification, species loss, changes to growing seasons, and stronger and possibly more frequent storms. Observations play a foundational role in documenting the state and variability of components of the climate system and facilitating climate prediction and scenario development. Regular and consistent collection of ocean observations over decades to centuries would monitor the Earth's main reservoirs of heat, carbon dioxide, and water and provides a critical record of long-term change and variability over multiple time scales. Sustained high-quality observations are also needed to test and improve climate models, which provide insights into the future climate system. Sustaining Ocean Observations to Understand Future Changes in Earth's Climate considers processes for identifying priority ocean observations that will improve understanding of the Earth's climate processes, and the challenges associated with sustaining these observations over long timeframes.
This report explores the potential for mitigating the impacts of climate change by improved management and protection of marine ecosystems and especially the vegetated coastal habitat, or blue carbon sinks. The objective of this report is to highlight the critical role of the oceans and ocean ecosystems in maintaining our climate and in assisting policy makers to mainstream an oceans agenda into national and international climate change initiatives. While emissions' reductions are currently at the centre of the climate change discussions, the critical role of the oceans and ocean ecosystems has been vastly overlooked.
There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.
Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming.
"In its resolutions 57/141 and 58/240, the General Assembly decided to establish a regular process under the United Nations for global reporting and assessment of the state of the marine environment, including socioeconomic aspects, both current and foreseeable, building on existing regional assessments. In its resolution 71/257, the Assembly recalled that the scope of the first cycle of the Regular Process focused on establishing a baseline and decided that the scope of the second cycle would extend to evaluating trends and identifying gaps. The programme of work for the period 2017-2020 of the second cycle of the Regular Process includes the preparation by the Group of Experts of the Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects, of the second World Ocean Assessment, building on the baselines established by the First Global Integrated Marine Assessment (first World Ocean Assessment). In its resolution 72/73, the Assembly decided that the Group of Experts should proceed on the basis of a single comprehensive assessment. The present document was prepared by the Group of Experts in accordance with those decisions"--Summary.
The National Science Foundation (NSF) has played a key role over the past several decades in advancing understanding of Earth's systems by funding research on atmospheric, ocean, hydrologic, geologic, polar, ecosystem, social, and engineering-related processes. Today, however, those systems are being driven like never before by human technologies and activities. Our understanding has struggled to keep pace with the rapidity and magnitude of human-driven changes, their impacts on human and ecosystem sustainability and resilience, and the effectiveness of different pathways to address those challenges. Given the urgency of understanding human-driven changes, NSF will need to sustain and expand its efforts to achieve greater impact. The time is ripe to create a next-generation Earth systems science initiative that emphasizes research on complex interconnections and feedbacks between natural and social processes. This will require NSF to place an increased emphasis on research inspired by real-world problems while maintaining their strong legacy of curiosity driven research across many disciplines ? as well as enhance the participation of social, engineering, and data scientists, and strengthen efforts to include diverse perspectives in research.
Our oceans are hugely important, as a source of food and mineral wealth, as an environment for a vast variety of wildlife, for the role they play in climate regulation, and as part of the biogeochemical cycles of carbon, nitrogen, and other elements critical to life. Dorrik Stow explores what we know about how oceans originate and are maintained.
"The definitive guide from the makers of the GNAT exam."