Download Free Mainstreaming Unmanned Undersea Vehicles Into Future Us Naval Operations Book in PDF and EPUB Free Download. You can read online Mainstreaming Unmanned Undersea Vehicles Into Future Us Naval Operations and write the review.

Forty years ago the Naval Studies Board was created at the request of then Chief of Naval Operations Admiral Elmo R. Zumwalt, Jr. As stated in his request to the National Academy of Sciences, he thought it important for the Navy to have an outside resource to which it could turn "for independent and outside counsel on any area of its responsibilities involving the interplay of scientific and technical matters with other national issues." Admiral Zumwalt, together with Under Secretary of the Navy Honorable David S. Potter and President of the National Academy of Sciences Dr. Philip Handler, recognized the importance of not only continuing but also focusing and strengthening the relationship that had existed between the National Academy of Sciences and the Department of the Navy since the Academy's creation in 1863. To commemorate this special anniversary, Naval Studies Board 40th Anniversary provides an overview of the history, mission, and accomplishments of the Board. In the coming years, the Naval Studies Board will continue to serve as a source of independent, long-range, scientific and technical planning advice for the nation's naval forces. It will also work to ensure that the relationships between the operational, science, engineering, and technical communities remain as strong and productive as ever to ensure that progress continues in areas most critical to meeting future naval forces' needs.
Today our naval forces enjoy maritime superiority around the world and find themselves at a strategic inflection point during which future capabilities must be pondered with creativity and innovation. Change must be embraced and made an ally in order to take advantage of emerging technologies, concepts, and doctrine; thereby preserving the nation's global leadership. Sea Power 21 has additionally specified unmanned vehicles as force multipliers and risk reduction agents for the Navy of the future. Transformation applies to what we buy as well as how we buy and operate it-all while competing with other shifting national investment priorities. The long-term UUV vision is to have the capability to: (1) deploy or retrieve devices, (2) gather, transmit, or act on all types of information, and (3) engage bottom, volume, surface, air or land targets (See Figure 1-1). The growing use of unmanned systems-air, surface, ground, and underwater is continually demonstrating new possibilities. One can conceive of scenarios where UUVs sense, track, identify, target, and destroy an enemy-all autonomously and tie in with the full net-centric battlespace. UUV systems will provide a key undersea component for FORCEnet, contributing to an integrated picture of the battlespace. Admittedly this vision is futuristic. Even though today's planners, operators, and technologists cannot accurately forecast the key applications for UUVs in the year 2050, this plan provides a roadmap to move toward that vision. Pursuit of this plan's updated recommendations beginning in the year 2004, will place increasingly large numbers of UUVs in the hands of warfighters. Thus, UUVs can begin addressing near-term needs while improving understanding of mid- to far-term possibilities. Even the most futuristic applications can evolve in a confident, cost-effective manner. This confidence is based on several factors: the Sea Power 21 Sub-Pillar capabilities identified here address a broad range of user needs; critical technologies are identified that will enable tomorrow's more complex applications; and key principles and best practices are recommended that provide for a logical, flexible, and affordable development effort.
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
Advanced aerial mobility is a newly emerging industry that aims to develop and operate new air vehicles potentially capable of safe, reliable, and low-noise vertical flight. The world has seen a recent increase in the adoption of electric vertical lift aircraft for urban, suburban and rural operations. These new innovations and technologies change the way that we move cargo and people, affecting industries across the economy. These changes will challenge today's airspace monitoring systems and regulatory environment. The U.S. government and its regulatory agencies need technical guidance to facilitate the development of these technologies, and to create the regulatory framework to foster the growth of this vertical flight industry to the benefit of the aviation industry. Advancing Aerial Mobility evaluates the potential benefits and challenges associated with this emerging industry. This report provides recommendations that seek to foster an environment in which the nation can maintain its leading position in developing, deploying, and embracing these new technologies. This publication presents a national vision for advanced aerial mobility, market evolution, and safety and security management.
While there are examples of successful weapon systems acquisition programs within the U.S. Air Force (USAF), many of the programs are still incurring cost growth, schedule delays, and performance problems. The USAF now faces serious challenges in acquiring and maintaining its weapons systems as it strives to maintain its current programs; add new capabilities to counter evolving threats; and reduce its overall program expenditures. Owning the technical baseline is a critical component of the Air Force's ability to regain and maintain acquisition excellence. Owning the technical baseline allows the government acquisition team to manage and respond knowledgeably and effectively to systems development, operations, and execution, thereby avoiding technical and other programmatic barriers to mission success. Additionally, owning the technical baseline ensures that government personnel understand the user requirements, why a particular design and its various features have been selected over competing designs, and what the options are to pursue alternative paths to the final product given unanticipated cost, schedule, and performance challenges. Owning the Technical Baseline for Acquisition Programs in the U.S. Air Force discusses the strategic value to the Air Force of owning the technical baseline and the risk of not owning it and highlights key aspects of how agencies other than the Air Force own the technical baseline for their acquisition programs. This report identifies specific barriers to owning the technical baseline for the Air Force and makes recommendations to help guide the Air Force in overcoming those barriers.
The Navy wants to develop and procure three new types of unmanned vehicles (UVs) in FY2020 and beyond-Large Unmanned Surface Vehicles (LUSVs), Medium Unmanned Surface Vehicles (MUSVs), and Extra-Large Unmanned Undersea Vehicles (XLUUVs). The Navy is requesting $628.8 million in FY2020 research and development funding for these three UV programs and their enabling technologies. The Navy wants to acquire these three types of UVs (which this report refers to collectively as large UVs) as part of an effort to shift the Navy to a new fleet architecture (i.e., a new combination of ships and other platforms) that is more widely distributed than the Navy's current architecture. Compared to the current fleet architecture, this more-distributed architecture is to include proportionately fewer large surface combatants (i.e., cruisers and destroyers), proportionately more small surface combatants (i.e., frigates and Littoral Combat Ships), and the addition of significant numbers of large UVs. The Navy wants to employ accelerated acquisition strategies for procuring these large UVs, so as to get them into service more quickly. The emphasis that the Navy placed on UV programs in its FY2020 budget submission and the Navy's desire to employ accelerated acquisition strategies in acquiring these large UVs together can be viewed as an expression of the urgency that the Navy attaches to fielding large UVs for meeting future military challenges from countries such as China. The LUSV program is a proposed new start project for FY2020. The Navy wants to procure two LUSVs per year in FY2020FY2024. The Navy wants LUSVs to be low-cost, high-endurance, reconfigurable ships based on commercial ship designs, with ample capacity for carrying various modular payloads-particularly anti-surface warfare (ASuW) and strike payloads, meaning principally anti-ship and land-attack missiles. The Navy reportedly envisions LUSVs as being 200 feet to 300 feet in length and having a full load displacement of about 2,000 tons. The MUSV program began in FY2019. The Navy plans to award a contract for the first MUSV in FY2019 and wants to award a contract for the second MUSV in FY2023. The Navy wants MUSVs, like LUSVs, to be low-cost, high-endurance, reconfigurable ships that can accommodate various payloads. Initial payloads for MUSVs are to be intelligence, surveillance and reconnaissance (ISR) payloads and electronic warfare (EW) systems. The Navy defines MUSVs as having a length of between 12 meters (about 39 feet) and 50 meters (about 164 feet). The Navy wants to pursue the MUSV program as a rapid prototyping effort under what is known as Section 804 acquisition authority. The XLUUV program, also known as Orca, was established to address a Joint Emergent Operational Need (JEON). The Navy wants to procure nine XLUUVs in FY2020-FY2024. The Navy announced on February 13, 2019, that it had selected Boeing to fabricate, test, and deliver the first four Orca XLUUVs and associated support elements. On March 27, 2019, the Navy announced that the award to Boeing had been expanded to include the fifth Orca. The Navy's large UV programs pose a number of oversight issues for Congress, including issues relating to the analytical basis for the more-distributed fleet architecture; the Navy's accelerated acquisition strategies and funding method for these programs; technical, schedule, and cost risk in the programs; the proposed annual procurement rates for the programs; the industrial base implications of the programs; the personnel implications of the programs; and whether the Navy has accurately priced the work it is proposing to do in FY2020 on the programs.
Which military missions for unmanned undersea vehicles (UUVs) appear most promising to pursue in terms of military need, operational and technical risks, alternatives, and cost? To answer this question, the authors assess risks associated with using UUVs for advocated missions, identify non-UUV alternatives that may be more appropriate for such missions, and analyze potential costs associated with UUV development and use. They conclude that seven missions: mine countermeasures, deployment of leave-behind surveillance sensors or sensor arrays, near-land and harbor monitoring, oceanography, monitoring undersea infrastructure, anti-submarine warfare tracking, and inspection/identification - appear most promising. Among other recommendations, the authors suggest that the U.S. Navy consolidate its unmanned system master plans and establish relevant priorities in coordination with the Office of the Secretary of Defense. Increased emphasis on the use of surface platforms rather than submarines as host platforms is recommended.
Potential adversaries throughout the world continue to acquire and develop sophisticated multi-layered, anti-access, area-denial (A2AD) systems. To maintain its maritime superiority, the United States must continue to innovate systems that are capable of operating in and defeating these A2AD environments. In particular, command of the undersea domain remains vital and will increasingly be critical in facing this future battle space. The challenges our nation faces, however, are not limited only to the technological capabilities of the warfighters, but also include a myriad of confounding constraints. In addition to the expected shortfalls of mission-ready assets, the Submarine Forces also must address significant pressures in defense spending. Nevertheless, unmanned undersea vehicles (UUVs) remain one of the top priorities of the Chief of Naval Operations, as UUVs serve as effective force multipliers, while greatly reducing risk, in critical missions in A2AD environments. This book presents the findings of analysis and assessment conducted by an integrated systems engineering and analysis team of military officer students at the Naval Postgraduate School. Their operationally driven tasking seeks to design a system-of-systems of unmanned and manned undersea vehicles to ensure undersea dominance both in the near term and into the next decade. The importance of the systems perspective to this study is reflected by the extensive engagement with many operational stakeholders, academic researchers, industry partners, and acquisitions programs across the Naval enterprise. The capability-based approach highlights the mission suitability of both currently fielded UUVs and also technologies realizable within the next decade. The capstone final report summarizes these critical insights and provides detailed recommendations to inform decision makers of the present to prepare for the undersea forces of the future.
During the Cold War the United States developed the Trident class ballistic missile submarine (SSBN) to replace the aging fleet of forty-one Poseidon ballistic missile submarines. Each of the eighteen Trident class submarines built to carry the mantle of strategic nuclear deterrence was extremely large and quiet with tubes for twenty-four ballistic missiles. Following the breakup of the Soviet Union and the end of the Cold War, the United States conducted a review of its nuclear posture, which determined that only fourteen of these submarines were necessary to meet the needs of U.S. national security. Since these submarines are due for nuclear core refueling and overhaul and thus are no longer required to support U.S. nuclear policy, these submarines will be deactivated or refueled and converted to other purposes. These submarines are only halfway through their design life of forty-two years, and once refueled could be used for other missions. Furthermore, their large size makes these ships a prime candidate for conversion to a large variety of missions that require space, stealth, and endurance, This excess capability has convinced the U.S. Navy that it should develop a concept for converting the first four Trident class ballistic missile submarines into guided missile submarines (SSGN). This program would equip these submarines both for cruise missile operations and as special operations force insertion platforms. Each submarine could carry more than 100 Tomahawk cruise missiles and up to sixty-six special operations personnel with dual Dry Deck Shelter or two Advanced SEAL Delivery System mini-submarines for SEAL deployment.