Download Free Main Tectonic Events And Metallogeny Of The North China Craton Book in PDF and EPUB Free Download. You can read online Main Tectonic Events And Metallogeny Of The North China Craton and write the review.

This book focuses on the metallogeny and main tectonic events of the North China Craton from early Precambrian to Phanerozoic. It covers the Archean crustal growth, Paleoproterozoic rifting-subduction-collision processes, Great Oxidation Event, Meso-Neoproterozoic multiple rifting, Phanerozoic reworking of the North China Craton, as well as metallogeny related to above different processes. The North China Craton is one of the oldest cratons in the world. It has experienced a complex geological evolution since the early Precambrian, and carries important records of secular changes in tectonics and metallogeny. It provides a systematic review and new results on the growth and evolution of the North China Craton and metallogeny. It will be of broad interest to the earth scientists working in the fields of economic geology, geochemistry, and tectonics of the North China Craton and eastern Asian.
Surveys the origin of continents, and the accretion and breakup of supercontinents through earth history. This book also shows how these processes affected the composition of seawater, climate, and the evolution of life.
This book is the first contribution to the overview of Precambrian geology of China. It covers Precambrian geology of the North China Craton, the South China Craton and the Tarim Craton, as well as other smaller blocks in the Chinese orogenic belts. It provides systematic concepts of the Chinese paleo-continents and incorporates the most up-to-date achievements. Edited by many of the active researchers working at the forefront of the related fields, it contributes greatly to the international Precambrian geology community and would be of interest to geoscientists working in the research field of geology of China and Precambrian geodynamics.
This book is the first systematic treatise of available data and view-points obtained from geological and geochemical studies of the Mo deposits in Qinling Orogen, China. Qinling Orogen has a minimum reserve of 8.7 Mt Mo, ranking the largest molybdenum province both in China and the world. Incorporating all known Mo deposit types in the world, it presents extensive studies of Mo deposits of world-class and unusual types within tectonic settings. The Qinling Orogen was finally formed during continental collision between Yangtze and North China cratons, following the Triassic closure of the northernmost paleo-Tethys. It hosts 49 Mo deposits formed in seven mineralization events since 1850 Ma, with all the world-class deposits being formed during 160-105 Ma, coeval with collisional orogeny. These deposits are assigned to magmatic and metamorphic hydrothermal classes. The magmatic hydrothermal class includes porphyries, skarns, and intrusion-related veins (carbonatite, fluorite and quartz). The porphyry Mo systems in Qinling Orogen are predominated by Dabie-type formed in continental collision setting, followed by Endako- and Climax-types formed in continental arcs and rifts, respectively. The metamorphic hydrothermal Mo deposits are only reported in Qinling Orogen, and thus a new crustal continuum model for the orogenic class mineral systems is proposed. A scientific linkage between ore geology and fluid inclusions is introduced and verified both by theory and case studies. This is the first research book comprehensively displaying continental collision metallogeny. This literature will benefit both Western and Chinese mineral explorers and miners, as well as research scientists and students.
The North China Craton is one of the oldest cratonic blocks in the world, containing rocks as old as 3.85 billion years. Focusing on Neoarchean mantle plumes and Paleoproterozoic plate tectonics, this book combines the results from modern geological research to provide you with a detailed synthesis of the geology, structure, and evolution of the North China Craton. It will be of value to anyone interested in the evolution of cratonic blocks and Precambrian geology as well as geoscientists interested in applying tectonic models to other cratonic blocks globally. This work will also be of interest to geologists concerned with the problems of structure and evolution of the Precambrian continents and supercontinents. - The first book to apply mantle plume and plate tectonics models to understanding the Neoarchean accretion and Paleoproterozoic amalgamation of a craton - Features more than 75 geologic maps, illustrations, diagrams, and microphotographs depicting the progressive stages of the North China Craton's Precambrian evolution - Authored by one of the world's foremost experts in cratonic evolution and mantle plume and plate tectonic modeling
Identification of large-volume, short-duration mafic magmatic events of intraplate affinity in both continental and oceanic settings on the Earth and other planets provides invaluable clues for understanding several vital geological issues of current concern. Of particular importance is understanding the assembly and dispersal of supercontinents through Earth’s history, dramatic climate change events including mass extinctions, and processes that have produced a wide range of large igneous province (LIP)-related resources, such as Ni–Cu–PGE, Au, U, base metals and petroleum. This volume comprises 21 contributions on the latest developments and new information on LIPs and their plumbing systems and presents methodical studies on different components of LIP plumbing systems. These articles are especially helpful in understanding continental break-up events, regional domal uplift and a variety of metallogenic systems, as well as the temporal and spatial distribution of LIPs, their origin and their likely links to mantle plumes/superplumes.
The Himalayan mountain belt, which developed during the India–Asia collision starting about 55 Ma ago, is a dramatically active orogen and it is regarded as the classic collisional orogen. It is characterized by an impressively continuous 2500 km of tectonic units, thrusts and normal faults, as well as large volumes of high-grade metamorphic rocks and granites exposed at the surface. This constitutes an invaluable field laboratory, where amazing crustal sections can be observed directly in very deep gorges. It is possible to unravel the tectonic and metamorphic evolution of litho-units, to observe the mechanisms of exhumation of deep-seated rocks and the propagation of the deformation. Himalayan tectonics has been the target of many studies from numerous international researchers over the years. In the last 15 years there has been an explosion of data and theories from both geological and geophysical perspectives. This book presents the results of integrated multidisciplinary studies, including geology, petrology, magmatism, geochemistry, geochronology and geophysics, of the structures and processes affecting the continental lithosphere. These processes and their spatial and temporal evolution have major consequences on the geometry and kinematics of the India–Eurasia collision zone.
Extensive descriptions of a wide range of key or world-class mineral deposits of China are presented in the context of the country’s general geology, tectonic units and mineral systems and their geodynamic evolution within the tectonic framework of the Asian continent. This comprehensive overview, incorporating the latest geological concepts, is the first such coverage written in English by a western expert, and will be of benefit to mineral explorers and miners, as well as to research scientists and students in institutions of higher education. In his compilation of this compendium of Chinese geology and mineral systems, Franco Pirajno draws on first-hand knowledge of China’s geology and mineral deposits gained in numerous field visits and research projects with Chinese colleagues from various academic institutions over the past 18 years. First time that a western-based book on China’s geology and mineral deposits is published Appropriate for use by the mineral exploration industry Modern English-language geological and mineral deposits information on China Most useful to Western (and Chinese) geoscientists
Early Continent Evolution of the North China Craton discusses the tectono-thermal regimes of the early continental crust in the North China Craton (NCC) from the Hadean to the early Paleoproterozoic, reconstructing the evolutional framework, and facilitating comprehensive understanding of the early continent evolution of the NCC. The book systematically summarizes the Neoarchean metamorphism of the NCC and discusses the implications for the tectonic models of the NCC, through compiling evolutional information of the Hadean to the early Paleoproterozoic sequences in the NCC. This allows for comprehensive summarizations and discussions on the tectonic framework of the NCC during this critical period. Researchers, academics and students in geology (especially Precambrian Geology), geomorphology, geophysics and geological engineering will benefit from using this book in applying tectonic models to other cratonic blocks globally, and will understand evolutional information of the largest and oldest cratonic block in China. - Completely covers all key issues and research frontiers of the early continental evolution of the North China Craton (NCC), from the Hadean to the early Paleoproterozoic - Systematically summarizes the Neoarchaean metamorphism of the NCC and discusses the implications for tectonic models - Includes discussion on controversial views on tectonic regimes of the NCC during the Archean to early Paleoproterozoic, with objective conclusions
The continental crust is our archive of Earth history, and the store of many natural resources; however, many key questions about its formation and evolution remain debated and unresolved: What processed are involved in the formation, differentiation and evolution of continental crust, and how have these changed throughout Earth history?How are plate tectonics, the supercontinent cycle and mantle cooling linked with crustal evolution?What are the rates of generation and destruction of the continental crust through time?How representative is the preserved geological record? A range of approaches are used to address these questions, including field-based studies, petrology and geochemistry, geophysical methods, palaeomagnetism, whole-rock and accessory-phase isotope chemistry and geochronology. Case studies range from the Eoarchaean to Phanerozoic, and cover many different cratons and orogenic belts from across the continents.