Download Free Magnetospheric Imaging Book in PDF and EPUB Free Download. You can read online Magnetospheric Imaging and write the review.

Magnetospheric Imaging: Understanding the Space Environment through Global Measurements is a state-of-the-art resource on new and advanced techniques and technologies used in measuring and examining the space environment on a global scale. Chapters detail this emergent field by exploring optical imaging, ultraviolet imaging, energetic neutral atom imaging, X-ray imaging, radio frequency imaging, and magnetic field imaging. Each technique is clearly described, with details about the technologies involved, how they work, and both their opportunities and limitations. Magnetospheric imaging is still a relatively young capability in magnetospheric research, hence this book is an ideal resource on this burgeoning field of study. This book is a comprehensive resource for understanding where the field stands, as well as providing a stepping stone for continued advancement of the field, from developing new techniques, to applying techniques on other planetary bodies. - Summarizes and reviews significant progress in the field of magnetospheric imaging - Covers all of the techniques and technologies available, including a basic overview of each, as well as what it can accomplish, how it works, what its limitations are, and how it might be improved - Details ways for measuring the space environment on a global scale, what physical measurements various technologies can provide, and how they can be effectively used
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) is a NASA Explorer mission that is the first space mission dedicated to imaging of the Earth's magnetosphere. IMAGE was launched from Vandenberg AFB into an elliptical polar orbit by a Delta II launch vehicle on March 25, 2000. The two-year prime sci entific mission of IMAGE began on May 25, 2000 after instrument commissioning was successfully completed. IMAGE has now been approved for operation until October 1,2005, and an additional two-year extension is now being considered by NASA. The papers in this volume represent many of the scientific results obtained dur ing the IMAGE prime mission and include some of the early correlative research with ground-based measurements, measurements from other spacecraft such as Cluster II, and relevant theory and modeling programs. All of the reported work is related to the overall IMAGE science objective: How does the magnetosphere respond globally to the changing conditions in the solar wind? IMAGE addresses this question with multi-spectral imaging of most of the important plasma pop ulations of the inner magnetosphere, combined with radio sounding of gradients of total plasma content. The new experimental techniques fall into the following areas: neutral atom imaging (NAI) over an energy range from 10 eV to 500 keY for detection of ionospheric outflow, the plasma sheet, and the ring current; far ultraviolet (FUV) imaging at 121-190 nm for detection of precipitating protons and the global aurora; extreme ultraviolet (EUV) imaging at 30.
IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) is the first NASA MIDEX mission and the first mission dedicated to imaging the Earth's magnetosphere. This volume offers detailed descriptions of the IMAGE instrumentation and of the image inversion techniques used to interpret the data. Also included are chapters on the IMAGE science objectives, the spacecraft design and capabilities, science and mission operations, and the processing and distribution of IMAGE's nonproprietary data products.
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system’s most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. This volume describes the in situ investigations on the Cassini orbiter: plasma spectrometer, ion and neutral mass spectrometer, energetic charged and neutral particle spectrometer, magnetometer, radio and plasma wave spectrometer and the cosmic dust analyzer. This book is of interest to all potential users of the Cassini-Huygens data, to those who wish to learn about the planned scientific return from the Cassini-Huygens mission and those curious about the processes occurring on this most fascinating planet. A third volume describes the remote sensing investigations on the orbiter.
For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation. Armstrong, T. P. and Gallagher, D. L. and Johnson, C. L. Marshall Space Flight Center ...