Download Free Magnetism And Transport Phenomena In Spin Charge Coupled Systems On Frustrated Lattices Book in PDF and EPUB Free Download. You can read online Magnetism And Transport Phenomena In Spin Charge Coupled Systems On Frustrated Lattices and write the review.

In this thesis, magnetism and transport phenomena in spin-charge coupled systems on frustrated lattices are theoretically investigated, focusing on Ising-spin Kondo lattice models and using a combination of Monte Carlo simulation and other techniques such as variational calculations and perturbation theory. The emphasis of the study is on how the cooperation of spin-charge coupling and geometrical frustration affects the thermodynamic properties of the Kondo lattice models; it presents the emergence of various novel magnetic states, such as the partial disorder, loop-liquid, and spin-cluster states. The thesis also reveals that the magnetic and electronic states and transport properties of these models demonstrate peculiar features, such as Dirac half-metals, anomalous Hall insulators, and spin Hall effects. Study of novel magnetic states and exotic transport phenomena in Kondo lattice systems is a field experiencing rapid progress. The interplay of charge and spin degrees of freedom potentially gives rise to various novel phases and transport phenomena which are related to strongly correlated electrons, frustrated magnetism, and topological states of matter. The results presented in this thesis include numerical calculations that are free from approximations. Accordingly, they provide reliable reference values, both for studying magnetism and transports of related models and for experimentally exploring novel states of matter in metallic magnets.
In this thesis, magnetism and transport phenomena in spin-charge coupled systems on frustrated lattices are theoretically investigated, focusing on Ising-spin Kondo lattice models and using a combination of Monte Carlo simulation and other techniques such as variational calculations and perturbation theory. The emphasis of the study is on how the cooperation of spin-charge coupling and geometrical frustration affects the thermodynamic properties of the Kondo lattice models; it presents the emergence of various novel magnetic states, such as the partial disorder, loop-liquid, and spin-cluster states. The thesis also reveals that the magnetic and electronic states and transport properties of these models demonstrate peculiar features, such as Dirac half-metals, anomalous Hall insulators, and spin Hall effects. Study of novel magnetic states and exotic transport phenomena in Kondo lattice systems is a field experiencing rapid progress. The interplay of charge and spin degrees of freedom potentially gives rise to various novel phases and transport phenomena which are related to strongly correlated electrons, frustrated magnetism, and topological states of matter. The results presented in this thesis include numerical calculations that are free from approximations. Accordingly, they provide reliable reference values, both for studying magnetism and transports of related models and for experimentally exploring novel states of matter in metallic magnets.
This book presents peer-reviewed articles from the National Workshop on Recent Advances in Condensed Matter and High Energy Physics-2021 (CMHEP-2021). This workshop was held in the Department of Physics, Ewing Christian College (ECC), Prayagraj, in collaboration with National Academic of Sciences (NASI), Prayagraj, India, in 2021. The book highlights recent theoretical and experimental developments in condensed matter and high energy physics which include novel phases of matter, namely crystalline and non-crystalline phases, unconventional superconducting phases, magnetic phases and Quark–Gluon plasma phases along with searches of neutrino and dark matter. This book provides a good resource for beginners as well as advanced researchers in the field of condensed matter and high energy physics.
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
This book is intended for postgraduate students as well as researchers in various areas of physics such as statistical physics, magnetism and materials sciences. The content of the book covers mainly frustrated spin systems with possible applications in domains where physical systems can be mapped into the spin language. Pedagogical effort has been made to make each chapter to be self-contained, comprehensible for researchers who are not really involved in the field. Basic methods are given in detail.
Spintronics is an emerging technology that exploits the intrinsic spin of the electron and its associated magnetic moment in addition to its fundamental electronic charge. The central issue of this multidisciplinary field is the manipulation of the spin degree of freedom in solid-state systems. Discoveries in recent years have inspired a new route in spintronic research which needs no ferromagnetic components. The research field "spintronic without magnetism" is based on the possibility to manipulate electric currents via spin-orbit coupling only. The spin Hall effect (SHE) is one of the most promising effects for the generation of spin polarized currents which is even present in non-magnetic materials. The SHE appears when an electric current flows through a medium with spin-orbit coupling present, leading to a spin-current perpendicular to the charge current. In this work the SHE as well as the anomalous Hall effect (AHE) are investigated on a first principles level using the spin-polarized fully relativistic Korringa-Kohn-Rostoker Green's function method (SPR-KKR-GF) in conjunction with the linear response Kubo-Streda formalism. Intrinsic as well as extrinsic contributions to the SHE/AHE are treated on equal footing. This opened up for the first time the possibility to reliably decompose the SHE/AHE into skew and side-jump scattering as well as intrinsic contributions in a quantitative manner.
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can within a single book obtain a global view of the current research development in the field of frustrated systems. This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors. The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so.