Download Free Magnetic Resonance Detection Of Explosives And Illict Materials Mrde 2012 Book in PDF and EPUB Free Download. You can read online Magnetic Resonance Detection Of Explosives And Illict Materials Mrde 2012 and write the review.

Detection of concealed explosives is a notoriously difficult problem, and many different approaches have been proposed to solve this problem. Nuclear quadrupole resonance (NQR) is unique in many ways. It operates in a safe AM radio frequency range, and it can remotely detect unique “fingerprint” (NQR spectrum) of many explosives, such as TNT or RDX. As such, the detection of target does not depend on the shape or material of the container, or the presence of metallic object such as triggers etc. Spectra of chemically similar compounds differ enough that their presence never causes interference or false alarms. Unfortunately, widespread use is prevented due to low sensitivity, radiofrequency interference from the noisy environment, and inability to detect liquid explosives. This book presents current state of the art of the attempts to overcome NQR sensitivity problem, either by increasing the strengths of signals generated, or by increasing the specificity of the technique through a better understanding of the factors that affect the quadrupolar parameters of specific explosives. The use of these specific quadrupolar parameters is demonstrated on signal processing techniques that can detect weak signals, which are hidden in a noisy background. The problem of differentiation of liquid explosives and benign liquids in closed containers is approached by measurements of different nuclear magnetic resonance (NMR) parameters. As shown, a couple of solutions has reached a prototype stage and could find their use in a near future.
This book is about improving prohibited substances detection using the nuclear quadrupole resonance (NQR) technique at security checkpoints. The book proposes multiple signal processing and analysis techniques for improving detection of dangerous or contraband substances, such as explosives, narcotics, or toxic substances. Also, several hardware solutions are described and implemented in a custom-designed NQR spectrometer. A new approach to NQR signal detection is introduced using artificial intelligence/deep learning techniques. The book will be useful for for researchers and practitioners in the areas of electrical engineering, signal processing and analysis, applied spectroscopy, as well as for security or laboratory equipment manufacturers.
This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.
Anti-personnel Landmine Detection for Humanitarian Demining reports on state-of-the-art technologies developed during a Japanese National Research Project (2002–2007). The conventional method of landmine detection is using metal detectors to sense the metal in mines, but often other metal fragments in minefields camouflage landmines and hinder progress using this form of demining. The challenge is to develop detection systems that can discriminate between AP landmines and random metal fragments. The JST adopted research proposals and the results are reported here. This book concentrates on aspects of three approaches to AP mine detection: enhancing and confirming the results of metal-detection scans using GPR; using robot vehicles and manipulators to operate within minefields remotely; and methods of sensing the explosives within mines. Results are presented in the fields of GPR, nuclear quadrupole resonance, neutron thermal analysis and biosensors. The integration of these methods for workable robot operation is demonstrated. The project was carried out in conjunction with mine action centers in Croatia, Cambodia and Afghanistan. Evaluation data from field trials are also given.
Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.
An up-to-date handbook, with the latest advances including all the various methods and techniques for analyzing explosives. Explosive compounds and mixtures, residues--their recovery and clean-up procedures--chromatography, polarography, spectroscopy, environmental analysis and mass spectroscopy are among the topics covered.
The Analysis of Explosives surveys the principles of the various analytical methods, describes how these methods are used for the analysis of explosives, and reviews the major analytical work carried out in this field. Organized into 15 chapters, this book begins with the classification of explosives. Subsequent chapters discuss the different methods for the analysis of explosives. The detection and identification of explosive residues and hidden explosives are also explained. This monograph will be useful as a reference book for chemists in analytical and forensic laboratories, as well as a textbook for graduate students in analytical chemistry and forensic sciences.
The book "Technology in Forensic Science" provides an integrated approach by reviewing the usage of modern forensic tools as well as the methods for interpretation of the results. Starting with best practices on sample taking, the book then reviews analytical methods such as high-resolution microscopy and chromatography, biometric approaches, and advanced sensor technology as well as emerging technologies such as nanotechnology and taggant technology. It concludes with an outlook to emerging methods such as AI-based approaches to forensic investigations.
Clear, comprehensive, and state of the art, the groundbreaking book on the emerging technology of direct analysis in real time mass spectrometry Written by a noted expert in the field, Direct Analysis in Real Time Mass Spectrometry offers a review of the background and the most recent developments in DART-MS. Invented in 2005, DART-MS offers a wide range of applications for solving numerous analytical problems in various environments, including food science, forensics, and clinical analysis. The text presents an introduction to the history of the technology and includes information on the theoretical background, for exampleon the ionization mechanism. Chapters on sampling and coupling to different types of mass spectrometers are followed by a comprehensive discussion of a broad range of applications. Unlike most other ionization methods, DART does not require laborious sample preparation, as ionization takes place directly on the sample surface. This makes the technique especially attractive for applications in forensics and food science. Comprehensive in scope, this vital text: -Sets the standard on an important and emerging ionization technique -Thoroughly discusses all the relevant aspects from instrumentation to applications -Helps in solving numerous analytical problems in various applications, for example food science, forensics, environmental and clinical analysis -Covers mechanisms, coupling to mass spectrometers, and includes information on challenges and disadvantages of the technique Academics, analytical chemists, pharmaceutical chemists, clinical chemists, forensic scientists, and others will find this illuminating text a must-have resource for understanding the most recent developments in the field.