Download Free Magnetic Properties And Applications Of Ferromagnetic Microwires With Amorphous And Nanocrystalline Structure Book in PDF and EPUB Free Download. You can read online Magnetic Properties And Applications Of Ferromagnetic Microwires With Amorphous And Nanocrystalline Structure and write the review.

Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications, Second Edition, reviews the growth and processing of nanowires and nanowire heterostructures using such methods as sol-gel and electrodeposition, focused-electron/ion-beam-induced deposition, epitaxial growth by chemical vapor transport, and more. Other sections cover engineering nanoporous anodic alumina, discuss magnetic and transport properties, domains, domain walls in nano-and microwires. and provide updates on skyrmions, domain walls, magnetism and transport, and the latest techniques to characterize and analyze these effects. Final sections cover applications, both current and emerging, and new chapters on memory, sensor, thermoelectric and nanorobotics applications. This book will be an ideal resource for academics and industry professionals working in the disciplines of materials science, physics, chemistry, electrical and electronic engineering and nanoscience.
Situated at the forefront of interdisciplinary research on ferromagnetic microwires and their multifunctional composites, this book starts with a comprehensive treatment of the processing, structure, properties and applications of magnetic microwires. Special emphasis is placed on the giant magnetoimpedance (GMI) effect, which forms the basis for developing high-performance magnetic sensors. After defining the key criteria for selecting microwires for various types of GMI sensors, the book illustrates how ferromagnetic microwires are employed as functional fillers to create a new class of composite materials with multiple functionalities for sensing and microwave applications. Readers are introduced to state-of-the-art fabrication methods, microwave tunable properties, microwave absorption and shielding behaviours, as well as the metamaterial characteristics of these newly developed ferromagnetic microwire composites. Lastly, potential engineering applications are proposed so as to highlight the most promising perspectives, current challenges and possible solutions.
These papers present advancements in all aspects of high temperature electrochemistry, from the fundamental to the empirical and from the theoretical to the applied. Topics involving the application of electrochemistry to the nuclear fuel cycle, chemical sensors, energy storage, materials synthesis, refractory metals and their alloys, and alkali and alkaline earth metals are included. Also included are papers that discuss various technical, economic, and environmental issues associated with plant operations and industrial practices.
Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.
This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect. Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdisciplinary and forward-looking approach will benefit the scientific community, particularly researchers and advanced graduate students working in the field of advanced magnetic materials, composites, and high-performance sensor and microwave devices.
This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets.
Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the averaging of magnetic anisotropy by exchange interactions, the decrease in exchange length, and the existence of a minimum two-phase structure at the atomic scale. Attention is also paid to the special character of the local atomic ordering and to the corresponding interatomic bonding as well as to anomalies and particularities of electron density distributions, and to the formation of metastable, nanocrystalline (or quasi-crystalline) phases built from exceptionally small grains with special properties. Another important focus of attention are new classes of materials which are not based on new compositions, but rather on the original and special crystalline structure in the nanoscale.
Magnetic and superconducting materials pervade every avenue of the technological world – from microelectronics and mass-data storage to medicine and heavy engineering. Both areas have experienced a recent revitalisation of interest due to the discovery of new materials, and the re-evaluation of a wide range of basic mechanisms and phenomena.This Concise Encyclopedia draws its material from the award-winning Encyclopedia of Materials and Engineering, and includes updates and revisions not available in the original set -- making it the ideal reference companion for materials scientists and engineers with an interest in magnetic and superconducting materials. - Contains in excess of 130 articles, taken from the award-winning Encyclopedia of Materials: Science and Technology, including ScienceDirect updates not available in the original set - Each article discusses one aspect of magnetic and superconducting materials and includes photographs, line drawings and tables to aid the understanding of the topic at hand - Cross-referencing guides readers to articles covering subjects of related interest
Handbook of Magnetic Materials covers the expansion of magnetism over the last few decades and its applications in research, notably the magnetism of several classes of novel materials that share with truly ferromagnetic materials the presence of magnetic moments. Volume 24 of the Handbook of Magnetic Materials, much like the preceding volumes, has a dual purpose. With contributions from leading authorities in the field, it includes a variety of self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature. The book is an ideal reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Each article contains an extensive description given in graphical, as well as, tabular form, with much emphasis placed on the discussion of the experimental material within the framework of physics, chemistry, and material science. - Comprises topical review articles written by leading authorities - Includes a variety of self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature - Introduces given topics in the field of magnetism - Describes novel trends and achievements in magnetism