Download Free Magnetic Phase Transitions In Single Crystals Book in PDF and EPUB Free Download. You can read online Magnetic Phase Transitions In Single Crystals and write the review.

Magnetic crystals are ideal systems to study the universal properties of phase transitions, particularly systems with quenched randomness and frustration. Pure systems with different symmetries provide the foundation for studies in corresponding systems with quenched randomness. Because phenomena near phase transitions have universal properties, results from bulk magnetic crystals provide a basis for understanding phase transitions in films and nanoparticles, as well as many non-magnetic materials.This motivates the subject of this book, which discusses phase transitions studies in magnetic crystals from the perspective of an experimentalist who has done extensive work in the field. The advantage is that many experimental techniques are described in sufficient detail for a good understanding of the results and their comparison to theory.
A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.
This volume in Advances in Physical Geochemistry presents the latest synthesis of theory and experimental data pertaining to structural and magnetic phase transitions in a variety of geochemically important minerals. The book is the first to cover the impact of this rapidly progressing area of solid state physics in earth sciences and reflects its growing significance for mineralogy and petrology.
The magnetocaloric effect describes the change in temperature of a magnetic material under adiabatic conditions through the application or removal of an external magnetic field. This effect is particularly pronounced at temperatures and fields corresponding to magnetic phase transitions, and it is a powerful and widely used tool for investigating t
About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years.
Over the last few decades, magnetism has seen an enormous expansion into a variety of different areas of research, notably the magnetism of several classes of novel materials that share with truly ferromagnetic materials only the presence of magnetic moments. Volume 22 of the Handbook of Magnetic Materials, like the preceding volumes, has a dual purpose. With contributions from leading authorities in the field, it includes a variety of topics which are intended as self-contained introductions to a given area in the field of magnetism without requiring recourse to the published literature. It is also intended as a reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Volume 22 comprises topical review articles covering perovskite manganites and their modifications, the magnetocaloric effect in intermetallic compounds and alloys, the scaling potential of particulate media in magnetic tape recording and layered iron superconductor systems. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material within the framework of physics, chemistry and material science. - Composed of topical review articles written by leading authorities - Introduces given topics in the field of magnetism - Provides the reader with novel trends and achievements in magnetism
This book deals with the phenomenological theory of first-order structural phase transitions, with a special emphasis on reconstructive transformations in which a group-subgroup relationship between the symmetries of the phases is absent. It starts with a unified presentation of the current approach to first-order phase transitions, using the more recent results of the Landau theory of phase transitions and of the theory of singularities. A general theory of reconstructive phase transitions is then formulated, in which the structures surrounding a transition are expressed in terms of density-waves, providing a natural definition of the transition order-parameters, and a description of the corresponding phase diagrams and relevant physical properties. The applicability of the theory is illustrated by a large number of concrete examples pertaining to the various classes of reconstructive transitions: allotropic transformations of the elements, displacive and order-disorder transformations in metals, alloys and related structures, crystal-quasicrystal transformations.