Download Free Magnetic Interactions In Rare Earth Insulators Book in PDF and EPUB Free Download. You can read online Magnetic Interactions In Rare Earth Insulators and write the review.

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Stuart Wolf This book originated as a series of lectures that were given as part of a Summer School on Spintronics in the end of August, 1998 at Lake Tahoe, Nevada. It has taken some time to get these lectures in a form suitable for this book and so the process has been an iterative one to provide current information on the topics that are covered. There are some topics that have developed in the intervening years and we have tried to at least alert the readers to them in the Introduction where a rather complete set of references is provided to the current state of the art. The field of magnetism, once thought to be dead or dying, has seen a remarkable rebirth in the last decade and promises to get even more important as we enter the new millennium. This rebirth is due to some very new insight into how the spin degree of freedom of both electrons and nucleons can play a role in a new type of electronics that utilizes the spin in addition to or in place of the charge. For this new field to mature and prosper, it is important that students and postdoctoral fellows have access to the appropriate literature that can give them a sound basis in the funda mentals of this new field and I hope that this book is a very good start in this direction.
This book is written to introduce experimental magnetism in a comprehensive manner to advanced undergraduate, postgraduate, and doctoral students pursuing studies in physics, material sciences, and engineering. It is an excellent resource providing an overview of the various experimental techniques in magnetism and magnetic materials. The text is partitioned into three parts. Part I deals with a brief history of magnetism and magnetic materials along with their role in modern society. A concise account of their current technological applications is also provided. Part II focusses on the basic phenomena of magnetism. Part III consists of chapters discussing a variety of experimental practices needed to study the microscopic as well as macroscopic aspects of different kinds of magnetic phenomena and materials.
``Spectroscopy of Crystals Containing Rare Earth Ions'' contains chapters on some key problems selected from a broad range of spectroscopic studies of RE-activated solids including both crystalline and glassy materials. Progress in crystal field theory is surveyed, an area which is basic to our understanding of the energy levels. The treatment of dynamical properties includes studies of coherence phenomena in isolated ions, energy transfer between ions and co-operative phenomena associated with ion-ion and ion-lattice interactions. In addition, the role of electron spins and nuclear spins is studied by light scattering and double resonance techniques. The presence of inhomogeneous broadening of spectral lines is observed and studied in many contexts, leading to new insights into general problems of the disordered state. Considerable attention is devoted to describing new experimental techniques whose development is of prime importance for progress in the spectroscopy of RE-activated solids. Many of these rely on the development and application of tunable lasers. At the moment this is a very active field of spectroscopy with more exciting developments likely to occur in the future.
This monograph presents a unified and coherent account of an important, focused area of rare-earth magnetism -- magnetic structures and excitations -- which both reflects the nature of the fundamental magnetic interactions and determines many of the characteristic properties of metals. The authors concentrate on the essential principles and their applications to typical examples, generally restricting the discussion to the pure elements and considering alloys and compounds only when they are instructive in illuminating particular topics. Both authors have been involved for some time in the effort that has been made in Denmark to study, both theoretically and experimentally, the magnetic structures and especially the excitations in the rare earths. This account of the subject represents the result of their experience, and it has been written in the hope that it will be useful not only to those who have a special interest in rare-earth magnetism, but also to a wider audience of physicists and condensed matter scientists interested in the techniques and achievements of modern research in magnetism.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 58, the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics, presents interesting chapters on Forensic applications of rare earth materials, and Rare earths, the seventeen-position nob. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains individual chapters that are comprehensive and broad, along with critical reviews - Provides contributions from highly experienced, invited experts
Quantum phase transitions describe the violent rearrangement of electrons or atoms as they evolve from well defined excitations in one phase to a completely different set of excitations in another. The chapters in this book give insights into how a coherent metallic or superconducting state can be driven into an incoherent insulating state by increasing disorder, magnetic field, carrier concentration and inter-electron interactions. The problem necessarily involves many interacting particles and therein lies the challenge to develop a multi-faceted theory. Experiments probing microscopic structure, transport, charge and spin dynamics provide important clues. What sets this book apart is a strong dialog between experiment and theory that has the potential to solve some major issues in many-body physics. The ideas and methods developed here are bound to have repercussions in all spheres of physics.
This continuing authoritative series deals with the chemistry, materials science, physics and technology of the rare earth elements. Volume 38 of the Handbook on the Physics and Chemistry of Rare Earth incorporates a recapitulation of the scientific achievements and contributions made by the late Professor LeRoy Eyring (1919-2005) to the science of the lanthanide oxides in which the lanthanide element has a valence equal to or greater than three.· Authoritative · Comprehensive · Up-to-date · Critical