Download Free Magnetic Dynamics In Iron Based Superconductors Probed By Neutron Spectroscopy Book in PDF and EPUB Free Download. You can read online Magnetic Dynamics In Iron Based Superconductors Probed By Neutron Spectroscopy and write the review.

This thesis combines highly accurate optical spectroscopy data on the recently discovered iron-based high-temperature superconductors with an incisive theoretical analysis. Three outstanding results are reported: (1) The superconductivity-induced modification of the far-infrared conductivity of an iron arsenide with minimal chemical disorder is quantitatively described by means of a strong-coupling theory for spin fluctuation mediated Cooper pairing. The formalism developed in this thesis also describes prior spectroscopic data on more disordered compounds. (2) The same materials exhibit a sharp superconductivity-induced anomaly for photon energies around 2.5 eV, two orders of magnitude larger than the superconducting energy gap. The author provides a qualitative interpretation of this unprecedented observation, which is based on the multiband nature of the superconducting state. (3) The thesis also develops a comprehensive description of a superconducting, yet optically transparent iron chalcogenide compound. The author shows that this highly unusual behavior can be explained as a result of the nanoscopic coexistence of insulating and superconducting phases, and he uses a combination of two complementary experimental methods - scanning near-field optical microscopy and low-energy muon spin rotation - to directly image the phase coexistence and quantitatively determine the phase composition. These data have important implications for the interpretation of data from other experimental probes.
This volume presents an in-depth review of experimental and theoretical studies on the newly discovered Fe-based superconductors. Following the Introduction, which places iron-based superconductors in the context of other unconventional superconductors, the book is divided into three sections covering sample growth, experimental characterization, and theoretical understanding. To understand the complex structure-property relationships of these materials, results from a wide range of experimental techniques and theoretical approaches are described that probe the electronic and magnetic properties and offer insight into either itinerant or localized electronic states. The extensive reference lists provide a bridge to further reading. Iron-Based Superconductivity is essential reading for advanced undergraduate and graduate students as well as researchers active in the fields of condensed matter physics and materials science in general, particularly those with an interest in correlated metals, frustrated spin systems, superconductivity, and competing orders.
This book studies the structural, magnetic and electronic properties of, as well as magnetic excitations in, high-temperature BaFe2-xNixAs2 superconductors using neutron diffraction and neutron spectroscopic methods. It describes the precise determination of the phase diagram of BaFe2-xNixAs2, which demonstrates strong magnetoelastic coupling and avoided quantum criticality driven by short-range incommensurate antiferromagnetic order, showing cluster spin glass behavior. It also identifies strong nematic spin correlations in the tetragonal state of uniaxial strained BaFe2-xNixAs2. The nematic correlations have similar temperature and doping dependence as resistivity anisotropy in detwinned samples, which suggests that they are intimately connected. Lastly, it investigates doping evolution of magnetic excitations in overdoped BaFe2-xNixAs2 and discusses the links with superconductivity. This book includes detailed neutron scattering results on BaFe2-xNixAs2 and an introduction to neutron scattering techniques, making it a useful guide for readers pursuing related research.
- Up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources - Multi-technique approach set around a central theme, rather than a monograph on one technique - Emphasis on the complementarity of neutron spectroscopy and X-ray spectroscopy which are usually treated in separate books
This practical guidebook is written for graduate and post-doctoral students, as well as for experienced researchers new to neutron scattering. Introductory chapters summarize useful scattering formulas and describe the components of a spectrometer. The authors then discuss the resolution function and focusing effects. Simple examples of phonon and magnon measurements are presented. Important chapters cover spurious effects in inelastic and elastic measurements, and how to avoid them. The last chapter covers techniques for, and applications of, polarization analysis.
This volume provides a comprehensive introduction to the theory of d-wave superconductivity, focused on d-wave pairing symmetry and its physical consequences in the superconducting state. It discusses the basic concepts and methodologies related to high-temperature superconductivity and compares experimental phenomena with theoretical predictions. After a brief introduction to the basic theory of superconductivity and several models for high-temperature superconductivity, this book presents detailed derivations and explanations for various single-particle and collective properties of d-wave superconductors that can be monitored experimentally, including thermodynamics, angular-resolved photo-emission, single-particle and Josephson tunnelling, impurity scattering, magnetic and superfluid responses, transport and optical properties and mixed states. Various universal behaviours of d-wave superconductors are highlighted. Aimed primarily at graduate students and research scientists in condensed matter and materials physics, this text enables readers to understand systematically the physical properties of high-temperature superconductors.
Neutron Scattering from Magnetic Materials is a comprehensive account of the present state of the art in the use of the neutron scattering for the study of magnetic materials. The chapters have been written by well-known researchers who are at the forefront of this field and have contributed directly to the development of the techniques described. Neutron scattering probes magnetic phenomena directly. The generalized magnetic susceptibility, which can be expressed as a function of wave vector and energy, contains all the information there is to know about the statics and dynamics of a magnetic system and this quantity is directly related to the neutron scattering cross section. Polarized neutron scattering techniques raise the sophistication of measurements to even greater levels and gives additional information in many cases. The present book is largely devoted to the application of polarized neutron scattering to the study of magnetic materials. It will be of particular interest to graduate students and researchers who plan to investigate magnetic materials using neutron scattering.· Written by a group of scientist who have contributed directly in developing the techniques described.· A complete treatment of the polarized neutron scattering not available in literature.· Gives practical hits to solve magnetic structure and determine exchange interactions in magnetic solids.· Application of neutron scattering to the study of the novel electronic materials.