Download Free Macroscopic Electrodynamics An Introductory Graduate Treatment Book in PDF and EPUB Free Download. You can read online Macroscopic Electrodynamics An Introductory Graduate Treatment and write the review.

'Macroscopic Electrodynamics' (ME) is a comprehensive two-semester introductory graduate level textbook on classical electrodynamics for use in physics and engineering programs. The word 'macroscopic' is intended to indicate both the large-scale nature of the theory, as well as the emphasis placed upon applications of the so-called macroscopic Maxwell equations to idealized media. ME emphasizes principles and practical methods of analysis, which are often presented in fresh and original ways. Illustrative examples are carefully chosen to promote the students' physical intuition, and are worked out in detail to give students a thorough grounding in solution techniques. The style is informal yet mathematically sound, and presumes only a basic familiarity with electrodynamics such as that obtained in a one-semester junior-level undergraduate class.At the end of each chapter, many original problems are provided with illustrations or expanded upon specific sections of the text. The problems are at the heart of the text and are meant to encourage students, develop confidence, and emphasize ideas while avoiding both oversimplification and inordinate calculational difficulties.
'Macroscopic Electrodynamics' (ME) is a comprehensive two-semester introductory graduate level textbook on classical electrodynamics for use in physics and engineering programs. The word 'macroscopic' is intended to indicate both the large-scale nature of the theory, as well as the emphasis placed upon applications of the so-called macroscopic Maxwell equations to idealized media. ME emphasizes principles and practical methods of analysis, which are often presented in fresh and original ways. Illustrative examples are carefully chosen to promote the students' physical intuition, and are worked out in detail to give students a thorough grounding in solution techniques. The style is informal yet mathematically sound, and presumes only a basic familiarity with electrodynamics such as that obtained in a one-semester junior-level undergraduate class.At the end of each chapter, many original problems are provided with illustrations or expanded upon specific sections of the text. The problems are at the heart of the text and are meant to encourage students, develop confidence, and emphasize ideas while avoiding both oversimplification and inordinate calculational difficulties.
This instructor's solutions guide accompanies our introductory graduate electrodynamics textbook, "Macroscopic Electrodynamics". We emphasize that this is a guide and not a step-by-step exposition for the 391 problems furnished in the text. Helpful indications of starting points and methods are given, as well as enough intermediate steps (and occasional final results) that a knowledgeable instructor can readily fill in the gaps. This approach is designed to provide the instructor with a powerful and time-saving teaching aid for introducing students to this beautiful and wide-ranging subject. This access is given only to instructors who are adopting the textbook for their classes. To gain access to this title, please fill in the adoption form and we will get back to you soon. Request Inspection Copy
Introduction to Electrodynamics and Radiation introduces the reader to electrodynamics and radiation, with emphasis on the microscopic theory of electricity and magnetism. Nonrelativistic quantum electrodynamics (QED) is presented as a logical outgrowth of the classical theory, both relativistic and nonrelativistic. The advanced mathematical and diagrammatic techniques of the relativistic quantum field theory are also described in a simple and easily understood manner. Comprised of 16 chapters, this book opens with an overview of the special theory of relativity and some of its consequences. The following chapters deal with classical relativistic electrodynamics, touching on topics such as tensor analysis and Riemannian spaces; radiation from charged particles; radiation scattering from electrons; and the classical theory of charged particles. The second part of the book is entirely quantum mechanical in outlook, beginning with the quantization of the Hamiltonian formulation of classical electrodynamics. The many-body formalism leading to Fock-space techniques is also considered, along with self-energies and renormalization. The final chapter is devoted to the covariant formulation of QED as well as the validity of QED. This monograph is written primarily for graduate students in elementary classical and quantum mechanics, electricity and magnetism, and modern physics courses.
Fundamentals of Electrodynamics is primarily a textbook for graduate students in physics. It is also a valuable at the senior level and as a profession reference book. It will be especially welcome to graduate students planning to do their doctoral research in quantum field theory or elementary particle physics. Fundamentals of Electrodynamics is a textbook for a one or two semester graduate or senior level course in electrodynamics or electromagnetic theory. It seeks to unify classical electrodynamics by using hamilton's principles and the symmetry properties of space and time as basic assumtions. For this reason special relativity is introduced much earlier than in most other texts. With this approach one is able to reduce the number of assumptions to a relatively fe that support the entire subject; in particular, from such basic assumptions, both the relativistic equations of motion for particles and Maxwell's equations for the electrodynamic field are derived. The text is broad in scope and covers, in addition to basic theory, applications to radiation theory, self-force of an electron, natural breadth of spectral lines, geometric optics, electrodynamics of material media, and propagation in moving media. The book contains worked-out examples with sample problems at the end of each chapter. Mathematical appendixes are included and the book is largely self-contained. This textbook conveys the unified nature of electrodynamics and points out, not only the beauty but also the limitations of the theory. The limitations are shown to rise from basic defects in the fundamental assumptions of the theory. The authors present analyses of the logical foundations of classical electrodynamics so that the student can better understand the problems that arise in modern theories, such as quantum electrodynamics. Also, by examining the nature of basic assumption and limits of applicability of a well-developed theory, the authors prepare the student for more difficult theories in elementary particle physics or quantum field theories.
Problems after each chapter
This is a re-issued and affordable printing of the widely used undergraduate electrodynamics textbook.