Download Free Macroscopic And Large Scale Phenomena Coarse Graining Mean Field Limits And Ergodicity Book in PDF and EPUB Free Download. You can read online Macroscopic And Large Scale Phenomena Coarse Graining Mean Field Limits And Ergodicity and write the review.

This book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory. Alexander Mielke's contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction. Martin Göll and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations.
This volume provides an introduction to the theory of Mean Field Games, suggested by J.-M. Lasry and P.-L. Lions in 2006 as a mean-field model for Nash equilibria in the strategic interaction of a large number of agents. Besides giving an accessible presentation of the main features of mean-field game theory, the volume offers an overview of recent developments which explore several important directions: from partial differential equations to stochastic analysis, from the calculus of variations to modeling and aspects related to numerical methods. Arising from the CIME Summer School "Mean Field Games" held in Cetraro in 2019, this book collects together lecture notes prepared by Y. Achdou (with M. Laurière), P. Cardaliaguet, F. Delarue, A. Porretta and F. Santambrogio. These notes will be valuable for researchers and advanced graduate students who wish to approach this theory and explore its connections with several different fields in mathematics.
This contributed volume explores innovative research in the modeling, simulation, and control of crowd dynamics. Chapter authors approach the topic from the perspectives of mathematics, physics, engineering, and psychology, providing a comprehensive overview of the work carried out in this challenging interdisciplinary research field. After providing a critical analysis of the current state of the field and an overview of the current research perspectives, chapters focus on three main research areas: pedestrian interactions, crowd control, and multiscale modeling. Specific topics covered in this volume include: crowd dynamics through conservation laws recent developments in controlled crowd dynamics mixed traffic modeling insights and applications from crowd psychology Crowd Dynamics, Volume 2 is ideal for mathematicians, engineers, physicists, and other researchers working in the rapidly growing field of modeling and simulation of human crowds.
This edited volume collects six surveys that present state-of-the-art results on modeling, qualitative analysis, and simulation of active matter, focusing on specific applications in the natural sciences. Following the previously published Active Particles volumes, these chapters are written by leading experts in the field and reflect the diversity of subject matter in theory and applications within an interdisciplinary framework. Topics covered include: Variability and heterogeneity in natural swarms Multiscale aspects of the dynamics of human crowds Mathematical modeling of cell collective motion triggered by self-generated gradients Clustering dynamics on graphs Random Batch Methods for classical and quantum interacting particle systems The consensus-based global optimization algorithm and its recent variants Mathematicians and other members of the scientific community interested in active matter and its many applications will find this volume to be a timely, authoritative, and valuable resource.
This book is devoted to recent developments in quantum mechanics. After an Introductory chapter, Chapter 2 describes the cooperative spontaneous lasing mechanism in gas in three level systems and their possible quantum retardation effects. Chapter 3 is concerned with the evolution of states of large quantum particle systems via marginal correlation operators. Chapter 4 studies the effects of electronic transfer using ab initio quantum calculation methods to access biological macromolecular system behaviors. Chapter 5 concentrates on new features of supersymmetric quantum mechanics using the adjunction of boson-fermion symmetry. The book will be of interest to graduate and Ph.D students as well as scientists from various backgrounds who are concerned with quantum effects.
The scientific field of data analysis is constantly expanding due to the rapid growth of the computer industry and the wide applicability of computational and algorithmic techniques, in conjunction with new advances in statistical, stochastic and analytic tools. There is a constant need for new, high-quality publications to cover the recent advances in all fields of science and engineering. This book is a collective work by a number of leading scientists, computer experts, analysts, engineers, mathematicians, probabilists and statisticians who have been working at the forefront of data analysis and related applications. The chapters of this collaborative work represent a cross-section of current concerns, developments and research interests in the above scientific areas. The collected material has been divided into appropriate sections to provide the reader with both theoretical and applied information on data analysis methods, models and techniques, along with related applications.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
The volume covers most of the topics addressed and discussed during the Workshop INdAM "Recent advances in kinetic equations and applications", which took place in Rome (Italy), from November 11th to November 15th, 2019. The volume contains results on kinetic equations for reactive and nonreactive mixtures and on collisional and noncollisional Vlasov equations for plasmas. Some contributions are devoted to the study of phase transition phenomena, kinetic problems with nontrivial boundary conditions and hierarchies of models. The book, addressed to researchers interested in the mathematical and numerical study of kinetic equations, provides an overview of recent advances in the field and future research directions.
This book contains articles presented at the 9th Workshop on Differential-Algebraic Equations held in Paderborn, Germany, from 17–20 March 2019. The workshop brought together more than 40 mathematicians and engineers from various fields, such as numerical and functional analysis, control theory, mechanics and electromagnetic field theory. The participants focussed on the theoretical and numerical treatment of “descriptor” systems, i.e., differential-algebraic equations (DAEs). The book contains 14 contributions and is organized into four parts: mathematical analysis, numerics and model order reduction, control as well as applications. It is a useful resource for applied mathematicians with interest in recent developments in the field of differential algebraic equations but also for engineers, in particular those interested in modelling of constraint mechanical systems, thermal networks or electric circuits.
Numerical Control: Part A, Volume 23 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Numerics for finite-dimensional control systems, Moments and convex optimization for analysis and control of nonlinear PDEs, The turnpike property in optimal control, Structure-Preserving Numerical Schemes for Hamiltonian Dynamics, Optimal Control of PDEs and FE-Approximation, Filtration techniques for the uniform controllability of semi-discrete hyperbolic equations, Numerical controllability properties of fractional partial differential equations, Optimal Control, Numerics, and Applications of Fractional PDEs, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on Numerical Control