Download Free Macroscale Models Of Flow Through Highly Heterogeneous Porous Media Book in PDF and EPUB Free Download. You can read online Macroscale Models Of Flow Through Highly Heterogeneous Porous Media and write the review.

The The book book was was planned planned in in such such a a manner manner that that two two basic basic goals goals would would be be reached. reached. On On the the one one hand, hand, the the goal goal was was to to show show some some new new results results in in the the field field of of modeling modeling transport transport through through highly highly heterogeneous heterogeneous media, media, based based on on the the homogenization homogenization theory. theory. Multiple Multiple new new mathematical mathematical models models of of transport transport are are presented presented herein, herein, studying studying their their properties, properties, developing developing methods methods to to compute compute effective effective parameters parameters of of the the averaged averaged media, media, simulation simulation of of cell cell problems, problems, using using new new models models to to simulate simulate some some practical practical problems. problems. High High heterogeneity heterogeneity being being subjected subjected to to the the homogenization homogenization procedure, procedure, generates generates non-local non-local phenomena phenomena and and then then gives gives a a possibility possibility to to develop develop a a new, new, non-local non-local (or (or "dynamic"), "dynamic"), theory theory of of transport transport in in porous porous media. media.
The book focuses on two issues related to mathematical and numerical modelling of flow in unsaturated porous media. In the first part numerical solution of the governing equations is discussed, with particular emphasis on the spatial discretization of highly nonlinear permeability coefficient. The second part deals with large scale flow in heterogeneous porous media of binary structure. Upscaled models are developed and it is shown that the presence of material heterogeneities may give rise to additional non-equilibrium terms in the governing equations or to hysteresis in the averaged constitutive relationships.
During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.
This book concerns a rapidly developing area of science that deals with the behavior of porous media saturated by fluids. Three basic aspects of this field are rather uniformly balanced in the book; namely, complex physical mechanisms of processes in porous media, new mathematical models, and numerical methods of process study. The following topics are included: homogenization and up-scaling of flow through heterogeneous media; micro-structural laws of complex flow at the pore scale; flow with phase transition and chemical reactions in porous media; wave propagation in saturated porous media; numerical model of flow in natural oil reservoirs; non-classical models of flow, percolation, fractals, foam flow; multi-phase flow with free surface. The contributors to this volume are leading researchers in the field.
This book provides concise, up-to-date and easy-to-follow information on certain aspects of an ever important research area: multiphase flow in porous media. This flow type is of great significance in many petroleum and environmental engineering problems, such as in secondary and tertiary oil recovery, subsurface remediation and CO2 sequestration. This book contains a collection of selected papers (all refereed) from a number of well-known experts on multiphase flow. The papers describe both recent and state-of-the-art modeling and experimental techniques for study of multiphase flow phenomena in porous media. Specifically, the book analyses three advanced topics: upscaling, pore-scale modeling, and dynamic effects in multiphase flow in porous media. This will be an invaluable reference for the development of new theories and computer-based modeling techniques for solving realistic multiphase flow problems. Part of this book has already been published in a journal. Audience This book will be of interest to academics, researchers and consultants working in the area of flow in porous media.
The very first major reference text on this topic, this book provides a unique collection of articles reviewing the state of the art in the field. It gives particular emphasis to emerging technologies, from bioengineering and bio-tissues to nanotechnology. The integration of the different topics is presented via a combination of theoretical and applied methodology to provide a self-contained major reference that is appealing to both the scientist and the engineer.
Over the last decade and particularly in recent years, the macroscopic porous media theory has made decisive progress concerning the fundamentals of the theory and the development of mathematical models in various fields of engineering and biomechanics. This progress has attracted some attention, and therefore conferences devoted almost exclusively to the macrosopic porous media theory have been organized in order to collect all findings, to present new results, and to discuss new trends. Many important contributions have also been published in national and international journals, which have brought the porous media theory, in some parts, to a close. Therefore, the time seems to be ripe to review the state of the art and to show new trends in the continuum mechanical treatment of saturated and unsaturated capillary and non-capillary porous solids. This book addresses postgraduate students and scientists working in engineering, physics, and mathematics. It provides an outline of modern theory of porous media and shows some trends in theory and in applications.
"This book contains an overview of the most relevant scientific contributions of Gerard de Josselin de Jong to the development of both Soil Mechanics and Transport in Porous Media. The volume comprises a selection of papers by de Josselin de Jong as they were published in the international scientific literature. In addition, some unpublished, but highly relevant work has been included. The selected papers were published in the period 1950-1990. They clearly demonstrate the development of ideas and the profound contributions of de Josselin de Jong." "This volume is intended for scientists, and engineers, working in geohydrology, geotechnical engineering, soil mechanics, environmental engineering, and transport in porous media. In addition, the volume will be of interest to students studying one of the aforementioned fields."--Jacket.
This book offers an insider's view of how industrial problems are translated into mathematics and how solving the mathematics leads to convincing industrial solutions as well. In 6 technical chapters, a wide range of industrial problems is modeled, simulated, and optimized; 4 others describe the modeling, computing, optimization, and data analysis concepts shaping the work of the Fraunhofer ITWM. Each technical chapter illustrates how the relevant mathematics has been adapted or extended for the specific application and details the underlying practical problem and resulting software. The final chapter shows how the use of mathematical modeling in the classroom can change the image of this subject, making it exciting and fun.
This book concerns a rapidly developing area of science that deals with the behavior of porous media saturated by fluids. Three basic aspects of this field are rather uniformly balanced in the book; namely, complex physical mechanisms of processes in porous media, new mathematical models, and numerical methods of process study. The following topics are included: homogenization and up-scaling of flow through heterogeneous media; micro-structural laws of complex flow at the pore scale; flow with phase transition and chemical reactions in porous media; wave propagation in saturated porous media; numerical model of flow in natural oil reservoirs; non-classical models of flow, percolation, fractals, foam flow; multi-phase flow with free surface. The contributors to this volume are leading researchers in the field.