Download Free Macromolecular Materials Book in PDF and EPUB Free Download. You can read online Macromolecular Materials and write the review.

Macromolecular Engineering: Design, Synthesis and Application of Polymers explores the role of macromolecular engineering in the development of polymer systems with engineered structures that offer the desired combination of properties for advanced applications. This book is organized into sections covering theory and principles, science and technology, architectures and technologies, and applications, with an emphasis on the latest advances in techniques, materials, properties, and end uses - and including recently commercialized, or soon to be commercialized, designed polymer systems. The chapters are contributed by a group of leading figures who are actively researching in the field. This is an invaluable resource for researchers and scientists interested in polymer synthesis and design, across the fields of polymer chemistry, polymer science, plastics engineering, and materials science and engineering. In industry, this book supports engineers, R&D, and scientists working on polymer design for application areas such as biomedical and healthcare, automotive and aerospace, construction and consumer goods. Presents the theory, principles, architectures, technologies, and latest advances in macromolecular engineering for polymer design and synthesis Explains polymer design for cutting-edge applications areas, including coatings, automotive, industrial, household and medical uses Approaches several novel materials, such as polyisobutylene (PIB), polyamide-based polyurethanes, and aliphatic polyesters
The progressive dwindling of fossil resources, coupled with the drastic increase in oil prices, have sparked a feverish activity in search of alternatives based on renewable resources for the production of energy. Given the predominance of petroleum- and carbon-based chemistry for the manufacture of organic chemical commodities, a similar preoccupation has recently generated numerous initiatives aimed at replacing these fossil sources with renewable counterparts. In particular, major efforts are being conducted in the field of polymer science and technology to prepare macromolecular materials based on renewable resources. The concept of the bio-refinery, viz. the rational exploitation of the vegetable biomass in terms of the separation of its components and their utilisation as such, or after suitable chemical modifications, is thus gaining momentum and considerable financial backing from both the public and private sectors. This collection of chapters, each one written by internationally recognised experts in the corresponding field, covers in a comprehensive fashion all the major aspects related to the synthesis, characterization and properties of macromolecular materials prepared using renewable resources as such, or after appropriate modifications. Thus, monomers such as terpenes and furans, oligomers like rosin and tannins, and polymers ranging from cellulose to proteins and including macromolecules synthesized by microbes, are discussed with the purpose of showing the extraordinary variety of materials that can be prepared from their intelligent exploitation. Particular emphasis has been placed on recent advances and imminent perspectives, given the incessantly growing interest that this area is experiencing in both the scientific and technological realms. - Discusses bio-refining with explicit application to materials - Replete with examples of applications of the concept of sustainable development - Presents an impressive variety of novel macromolecular materials
Written by a chemical physicist specializing in macromolecular physics, this book brings to life the definitive work of celebrated scientists who combined multidisciplinary perspectives to pioneer the field of polymer science. The author relates firsthand the unique environment that fostered the experimental breakthroughs underlying some of today's
Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products.
This book discusses macromolecular chemistry, from natural to synthetic polymers. Natural polymers including carbohydrates, lipids, proteins, and nucleic acids are explored including their classifications and properties. Industrial synthetic polymers are discussed including their synthesis, characterization, and industrial use. Applications discussed include potential additives and biodegradable polymers.
Macromolecular Solutions: Solvent-Property Relationships in Polymers is a collection of papers presented at a symposium on Macromolecular Solutions, held New York City on August 23-28, 1981, sponsored by the American Chemical Society at its 182nd national meeting. This book is composed of 19 chapters and begins with discussions on the concept, application, and analysis of solubility parameters of polymers. The succeeding chapters deal with the role of solubility parameters in polymer coating design and stress cracking of nylon. Considerable chapters are devoted to the preparation, properties, reactions, and analysis of various polymers and copolymers. These topics are followed by surveys of the polymer-surfactant interaction effect on polymer solution properties and the effects of methanol-gasoline mixtures on elastomers. The final chapters describe the residual solvent content effect on dissolution kinetics of polymers; the application of excimer fluorescence to measure polymer-solvent interactions; and a general procedure for the calculation of thermodynamic properties of polymer solutions. This book will be of great value to polymer chemists, manufacturers, and researchers.
Advances in Molecular Nanotechnology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Molecular Nanotechnology. The editors have built Advances in Molecular Nanotechnology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Molecular Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Molecular Nanotechnology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
"Polymeric and Nanostructured Macromolecules" presents the recent advances made in the synthesis, characterization, and applications of polymeric macromolecules. This book provides an excellent overview of the recent breakthroughs in the science of macromolecules, with an emphasis on nanostructured macromolecules and the perspectives that these versatile materials offer to different fields such as optoelectronics and biotechnology. Advanced undergraduate, graduate students and researchers alike will find the topics concerning physical and chemical properties of advanced macromolecular materials of great interest.
The field of CMA (complex macromolecular architecture) stands at the cutting edge of materials science, and has been a locus of intense research activity in recent years. This book gives an extensive description of the synthesis, characterization, and self-assembly of recently-developed advanced architectural materials with a number of potential applications. The architectural polymers, including bio-conjugated hybrid polymers with poly(amino acid)s and gluco-polymers, star-branched and dendrimer-like hyperbranched polymers, cyclic polymers, dendrigraft polymers, rod-coil and helix-coil block copolymers, are introduced chapter by chapter in the book. In particular, the book also emphasizes the topic of synthetic breakthroughs by living/controlled polymerization since 2000. Furthermore, renowned authors contribute on special topics such as helical polyisocyanates, metallopolymers, stereospecific polymers, hydrogen-bonded supramolecular polymers, conjugated polymers, and polyrotaxanes, which have attracted considerable interest as novel polymer materials with potential future applications. In addition, recent advances in reactive blending achieved with well-defined end-functionalized polymers are discussed from an industrial point of view. Topics on polymer-based nanotechnologies, including self-assembled architectures and suprastructures, nano-structured materials and devices, nanofabrication, surface nanostructures, and their AFM imaging analysis of hetero-phased polymers are also included. Provides comprehensive coverage of recently developed advanced architectural materials Covers hot new areas such as: click chemistry; chain walking; polyhomologation; ADMET Edited by highly regarded scientists in the field Contains contributions from 26 leading experts from Europe, North America, and Asia Researchers in academia and industry specializing in polymer chemistry will find this book to be an ideal survey of the most recent advances in the area. The book is also suitable as supplementary reading for students enrolled in Polymer Synthetic Chemistry, Polymer Synthesis, Polymer Design, Advanced Polymer Chemistry, Soft Matter Science, and Materials Science courses. Color versions of selected figures can be found at www.wiley.com/go/hadjichristidis
Structure and Properties of High-Performance Fibers explores the relationship between the structure and properties of a wide range of high-performance fibers. Part I covers high-performance inorganic fibers, including glasses and ceramics, plus carbon fibers of various types. In Part II, high-performance synthetic polymer fibers are discussed, while Part III reviews those natural fibers that can be used to create advanced textiles. The high-performance properties of these fibers are related to their chemistry and morphology, as well as the ways in which they are synthesized and spun. High-performance fibers form the basis of textile materials with applications in protection, medicine, and composite reinforcement. Fibers are selected for these technical applications due to their advanced physical, mechanical, and chemical properties. - Offers up-to-date coverage of new and advanced materials for the fiber and textile industries - Reviews structure-property relationships of high-performance inorganic, carbon, synthetic polymer, and natural fibers - Includes contributions from an international team of authors edited by an expert in the field - Reviews those natural fibers that can be used to create advanced textiles