Download Free Macromolecular Crystallography Protocols Structure Determination Book in PDF and EPUB Free Download. You can read online Macromolecular Crystallography Protocols Structure Determination and write the review.

Macromolecular Crystallography Protocols, now in two volumes, examines major developments that have occurred since publication of the acclaimed first edition nearly a decade ago. Volume 1 is composed of detailed protocols for the preparation and optimization of crystals. Volume 2 complements the first volume by addressing laboratory techniques for crystal handling and structural characterization. The volume concludes with a survey of available crystallographic software.
This volume provides methods for modern macromolecular crystallography, including all steps leading to crystal structure determination and analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Protein Crystallography aims to ensure successful results in the further study of this vital field.
In the decade since publication of the first edition this book, the field has seen several major developments. These developments have both accelerated the pace of structure determination and made crystallography accessible to a broader range of investigators. Volume I is dedicated to crystallization and ways to increase the odds of obtaining crystals in macromolecules. Volume 2 covers both computational methods for characterizing crystals and solving structures.
Macromolecular Crystallography Protocols, now in two volumes, examines major developments that have occurred since publication of the acclaimed first edition nearly a decade ago. Volume 1 is composed of detailed protocols for the preparation and optimization of crystals. Volume 2 complements the first volume by addressing laboratory techniques for crystal handling and structural characterization. The volume concludes with a survey of available crystallographic software.
This book reviews current techniques used in membrane protein structural biology, with a strong focus on practical issues. The study of membrane protein structures not only provides a basic understanding of life at the molecular level but also helps in the rational and targeted design of new drugs with reduced side effects. Today, about 60% of the commercially available drugs target membrane proteins and it is estimated that nearly 30% of proteins encoded in the human genome are membrane proteins. In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with the structure determination of membrane proteins. This book reviews a variety of recent techniques that are essential to any modern researcher in the field of membrane protein structural biology. The topics that are discussed are not commonly found in textbooks. The scope of this book includes: Expression screening using fluorescent proteins The use of detergents in membrane protein research The use of NMR Synchrotron developments in membrane protein structural biology Visualisation and X-ray data collection of microcrystals X-ray diffraction data analysis from multiple crystals Serial millisecond crystallography Serial femtosecond crystallography Membrane protein structures in drug discovery The information provided in this book should be of interest to anyone working in the area of structural biology. Students will find carefully prepared overviews of basic ideas and advanced protein scientists will find the level of detail required to apply the material directly to their day to day work. Chapters 4, 5, 6, 8 and 9 of this book are published open access under a CC BY 4.0 license at link.springer.com.
Crystallography may be described as the science of the structure of materi als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain mathematical results are assumed in order that their applications may be discussed. At the end of each chapter, a short bibliog raphy is given, which may be used to extend the scope of the treatment given here. In addition, reference is made in the text to specific sources of information. We have chosen not to discuss experimental methods extensively, as we consider that this aspect of crystallography is best learned through practical experience, but an attempt has been made to simulate the interpretive side of experimental crystallography in both examples and exercises.
The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.
The proteome remains a mysterious realm. Researchers have determined the structures of only a small fraction of the proteins encoded by the human genome. Crystallography continues to be the primary method used to determine the structures of the remaining unknown proteins. This imaging technique uses the diffraction of X-rays to determine a protein’s three-dimensional molecular structure. Drawing on years of research and teaching experience, Eaton E. Lattman and Patrick J. Loll use clear examples and abundant illustrations to provide a concise and accessible primer on protein crystallography. Discussing the basics of diffraction, the behavior of two- and three-dimensional crystals, phase determination (including MIR and MAD phasing and molecular replacement), the Patterson function, and refinement, Lattman and Loll provide a complete overview of this important technique, illuminated by physical insights. The crisp writing style and simple illustrations will provide beginner crystallographers with a guide to the process of unraveling protein structure.
X-ray crystallography is the main method used to determine the structure of biological molecules. X-ray crystallography is explained without maths and reading this text allows biologists to assess the quality and accuracy of biological structures.