Download Free Macromixing And Micromixing In A Semibatch Chemical Reactor Book in PDF and EPUB Free Download. You can read online Macromixing And Micromixing In A Semibatch Chemical Reactor and write the review.

Chemical Reactor Development is written primarily for chemists and chemical engineers who are concerned with the development of a chemical synthesis from the laboratory bench scale, where the first successful experiments are performed, to the design desk, where the first commercial reactor is conceived. It is also written for those chemists and chemical engineers who are concerned with the further development of a chemical process with the objective of enhancing the performance of an existing industrial plant, as well as for students of chemistry and chemical engineering. In Part I, the `how' and the `why' of chemical reaction engineering are explained, particularly for those who are not familiar with this area. Part II deals with the effects of a number of physical phenomena on the outcome of chemical reactions, such as micro and meso-mixing and residence time distribution, mass transfer between two phases, and the formation of another phase, such as in precipitations. These scale-dependent effects are not only important in view of the conversion of chemical reactions, but also with regard to the selectivity, and in the case of solid products, to their morphology. In Part III, some applications are treated in a general way, including organic syntheses, the conversion and formation of inorganic solids, catalytic processes and polymerizations. The last chapter gives a review of the importance of the selectivity for product quality and for the purity of waste streams. For research chemists and chemical engineers whose work involves chemical reaction engineering. The book is also suitable as a supplementary graduate text.
This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.
Batch processes are used to manufacture many fine organic chemicals, and as such they can be considered to underpin much of the modern chemical industry. Despite widespread use and a consequent huge contribution to wealth creation, batch processes have attracted limited attention outside the user industries. Batch chemicals processing uses a number of core techniques and technologies, such as scheduling and sequence control, agitation and batch filtration. The combination of these technologies with often complex chemistry, the multi-purpose nature of much of this type of plant, the distinctive safety and environmental issues, and a fast moving commercial environment makes the development of a successful batch process a considerable challenge for the chemist or engineer. The literature on the topics covered in this book is fragmented and often not easily accessible, so this handbook has been written to address this problem and to bring together design and process analysis methods in the core areas of batch process design. By combining the science and pragmatism required in the development of successful batch processes this new book provides answers to real problems in an accessible and concise way. Written by an international team of authors drawn from industry, consulting and academe, this book is an essential part of the library of any chemist, technologist or engineer working on the development of new or existing batch processes.
The book relates the individual aspects of chemical reactor engineering and computational flow modeling in a coherent way to explain the potential of computational flow modeling for reactor engineering research and practice.
This volume is a selection of the material presented at the 7th European Mixing Congress. It is concerned exclusively with mixing in circular section vessels, using centrally mounted paddles or similar impellers. The contents are arranged under three classifications: Modelling of Mixing Processes, Mixing Operations and Experimental Techniques. The classifications result in the original material appearing in a different order to that of the Congress. This arrangement is intended to assist the reader in identifying the topic area by function or application, rather than by technology. In this book the section on Modelling contains papers which focus on the representation of the mixing process, whether by equation, scale-up criteria, or fluid dynamic simulation. Similarly, Mixing Operations are concerned with the application or function of the mixing process, such as mass transfer, heat transfer or mixing time. Experimental Techniques addresses the tools the researcher needs to use at the data gathering experimental stage. It collects together advances made in the various methods used by some of the foremost researchers, and indicates those areas still in need of additional instrumentation or methods of data reduction. The book is intended for researchers, designers and users of mixing equipment, and for those planning research and development programmes and who wish to keep up to date with advances in the basic technology and its applications.
Turbulent Mixing and Chemical Reactions Jerzy Ba???dyga, Warsaw University of Technology, Poland John R. Bourne, Visiting Professor, University of Birmingham, UK and Emeritus Professor, ETH Zurich, Switzerland The way in which reagents are mixed can greatly influence the yield and range of products formed by fast, multiple chemical reactions. Understanding this phenomenon enables chemists to carry out reactions more selectively, make better use of raw materials and simplify product workup and separation. Turbulent Mixing and Chemical Reactions presents a balanced treatment of the connection between mixing and reaction. It contains theoretical aspects, experimental methods and expected results as well as worked examples to illustrate problem solving. This book will be of interest to all scientists involved in chemical engineering, physical chemistry, and synthetic chemists in the fine chemical and pharmaceuticals industry.
Taking greater advantage of powerful computing capabilities over the last several years, the development of fundamental information and new models has led to major advances in nearly every aspect of chemical engineering. Albright’s Chemical Engineering Handbook represents a reliable source of updated methods, applications, and fundamental concepts that will continue to play a significant role in driving new research and improving plant design and operations. Well-rounded, concise, and practical by design, this handbook collects valuable insight from an exceptional diversity of leaders in their respective specialties. Each chapter provides a clear review of basic information, case examples, and references to additional, more in-depth information. They explain essential principles, calculations, and issues relating to topics including reaction engineering, process control and design, waste disposal, and electrochemical and biochemical engineering. The final chapters cover aspects of patents and intellectual property, practical communication, and ethical considerations that are most relevant to engineers. From fundamentals to plant operations, Albright’s Chemical Engineering Handbook offers a thorough, yet succinct guide to day-to-day methods and calculations used in chemical engineering applications. This handbook will serve the needs of practicing professionals as well as students preparing to enter the field.
This book provides an introduction to the basic concepts of chemical reactor analysis and design. It is intended for both the senior level undergraduate student in chemical engineering and the working professional who may require an understanding of the basics of this subject.