Download Free Machines That Walk Book in PDF and EPUB Free Download. You can read online Machines That Walk and write the review.

The first chapter of this book traces the history of the development of walking machines from the original ideas of man-amplifiers and military rough-ground transport to today's diverse academic and industrial research and development projects. It concludes with a brief account of research on other unusual methods of locomotion. The heart of the book is the next three chapters on the theory and engineering of legged robots. Chapter 2 presents the basics of land loco motion, going on to consider the energetics of legged movement and the description and classification of gaits. Chapter 3, dealing with the mechanics of legged vehicles, goes into leg number and arrangement, and discusses mechanical design and actuation methods. Chapter 4 deals with analysis and control, describing the aims of control theory and the methods of modelling and control which have been used for both highly dynamic robots and multi-legged machines. Having dealt with the theory of control it is necessary to discuss the computing system on which control is to be implemented. This is done in Chapter 5, which covers architectures, sensing, algorithms and pro gramming languages. Chapter 6 brings together the threads of the theory and engineering discussed in earlier chapters and summarizes the current walking machine research projects. Finally, the applications, both actual and potential, of legged locomotion are described. Introduction Research into legged machines is expanding rapidly. There are several reasons why this is happening at this particular time.
Dr. Lester A. Gerhardt Professor and Chairman Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute Troy, New York 12180 This book is a collection of papers on the subject of Robotics and Artificial Intelligence. Most of the papers contained herein were presented as part of the program of the NATO Advanced Study Institute held in June 1983 at Castel vecchio Pascoli, Italy on the same subject. Attendance at this two week Institute was by invitation only, drawing people internationally representing industry, government and the academic community worldwide. Many of the people in attendance, as well as those presenting papers, are recognized leaders in the field. In addition to the formal paper presentations, there were several informal work shops. These included a workshop on sensing, a workshop on educational methodology in the subject area, as examples. This book is an outgrowth and direct result of that Institute and includes the papers presented as well as a few others which were stimulated by that meeting. A special note is the paper entitled "State-of-the-Art and Predictions for Artificial Intelligence and Robotics" by Dr. R. Nagel which appears in the Introduction and Overview chapter of this book. This paper was originally developed as part of a study for the United States Army performed by the National Research Council of the National Academy of Science and published as part of a report entitled "Applications of Robotics and Artificial Intelligence to Reduce Risk and Improve Effectiveness" by National Academy Press in 1983.
Discovering the secrets of animal movement and what they can teach us Insects walk on water, snakes slither, and fish swim. Animals move with astounding grace, speed, and versatility: how do they do it, and what can we learn from them? In How to Walk on Water and Climb up Walls, David Hu takes readers on an accessible, wondrous journey into the world of animal motion. From basement labs at MIT to the rain forests of Panama, Hu shows how animals have adapted and evolved to traverse their environments, taking advantage of physical laws with results that are startling and ingenious. In turn, the latest discoveries about animal mechanics are inspiring scientists to invent robots and devices that move with similar elegance and efficiency. Hu follows scientists as they investigate a multitude of animal movements, from the undulations of sandfish and the way that dogs shake off water in fractions of a second to the seemingly crash-resistant characteristics of insect flight. Not limiting his exploration to individual organisms, Hu describes the ways animals enact swarm intelligence, such as when army ants cooperate and link their bodies to create bridges that span ravines. He also looks at what scientists learn from nature’s unexpected feats—such as snakes that fly, mosquitoes that survive rainstorms, and dead fish that swim upstream. As researchers better understand such issues as energy, flexibility, and water repellency in animal movement, they are applying this knowledge to the development of cutting-edge technology. Integrating biology, engineering, physics, and robotics, How to Walk on Water and Climb up Walls demystifies the remarkable mechanics behind animal locomotion.
Bringing together academics, researchers, and industrialists, Climbing and Walking Robots 2003 (CLAWAR 2003) provides a forum for cross-fertilization in the different specialities so that both state-of-the-art and industrial applications can be reported on. Original contributions, both industrial and those in new/emerging fields, provide a full picture of climbing and walking robots. The interest in climbing and walking robots (CLAWAR) has increased considerably over recent years, addressing many application fields such as exploration/intervention in extreme environments, personal services, emergency rescue operations, transportation, entertainment, etc., and envisage humanoid robots evolving into mechatronic replicas of ourselves. Topics covered include: Biological Inspired Systems Medical Systems Control of CLAWAR Design Methodology System Modelling and Simulation Modularity and System Architecture Gait Generation and Stability of CLAWAR Biped Locomotion Multi-legged Locomotion Micro Machines Applications Climbing Robots Actuators, Sensors, Navigation, and Sensors Fusion CLAWAR Network Workpackages
Design and Operation of Locomotion Systems examines recent advances in locomotion systems with multidisciplinary viewpoints, including mechanical design, biomechanics, control and computer science. In particular, the book addresses the specifications and requirements needed to achieve the proper design of locomotion systems. The book provides insights on the gait analysis of humans by considering image capture systems. It also studies human locomotion from a rehabilitation viewpoint and outlines the design and operation of exoskeletons, both for rehabilitation and human performance enhancement tasks. Additionally, the book content ranges from fundamental theory and mathematical formulations, to practical implementations and experimental testing procedures.
This book presents biologically inspired walking machines interacting with their physical environment, and shows how the morphology and behavior control of machines can benefit from biological studies. The purpose is to develop a modular structure of neural control generating reactive behaviors of the physical walking machines, to analyze the neural mechanisms underlying them, and to demonstrate the sensor fusion technique leading to smooth switching between appropriate behaviors, like obstacle avoidance and sound tropism.
I wonder whether Karel Capek imagined in 1923 that by his use of the Czech word for forced labor, rohota, to name the android creations of Mr. Rossum he was naming an important technology of his future. Perhaps it wasn't Capek's work directly, but rather its influence on Lang's movie Metropolis in 1926 that introduced the term to the popular consciousness. In the public mind ever since a robot has been a me chanical humanoid, tireless and somewhat sinister. In the research community the field of robotics has recently reached large size and respectability, but without answering the question, "What is robotics?" or perhaps, "What is a robot?" There is no real consensus for a precise definition of robotics. I suppose that Capekian mechanical men, if one could build them, are robots, but after that there is little agreement. Rather than try to enumerate all of the things that are and are not robots, I will try to characterize the kinds of features that make a system a robot. A candidate definition of a robot is a system intended to achieve mechanical action, with sensory feedback from the world to guide the actions and a sophisticated con trol system connecting the sensing and the actions.
Traces the story of how ancient cultures envisioned artificial life, automata, self-moving devices and human enhancements, sharing insights into how the mythologies of the past related to and shaped ancient machine innovations.
In a near-future America, a sentient computer program named Charlotte has turned terrorist, but Lee Fisher, the closeted son of an ultraconservative President, is more concerned with keeping his Secret Service detail from finding out about his developing romance with Nico, the new guy at school, but when the spider-like robots that roam the school halls begin acting even stranger than usual, Lee realizes he is Charlotte's next target.
Ready for a machine quilting adventure? It's time to explore walking foot machine quilting with Leah Day! Specifically designed for quilting on a home machine, this style uses a walking foot to evenly feed the layers of your quilt to produce beautiful quilting stitches. Learn how to quilt thirty designs in seven quilt projects.