Download Free Machine Learning For Complex And Unmanned Systems Book in PDF and EPUB Free Download. You can read online Machine Learning For Complex And Unmanned Systems and write the review.

"This book highlights applications that include machine learning methods to enhance new developments in complex and unmanned systems. The main topics covered under this title include: machine learning, artificial intelligence, cryptography, submarines, drones, security in healthcare, Internet of Things and robotics. This book can be used by graduate students, industrial and academic professionals to revise real case studies in applying machine learning in the areas of modeling, simulation and optimization of complex systems, cryptography, electronics, healthcare, control systems, Internet of Things, security, and unmanned systems such as submarines, drones and robots"--
This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets. In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science. The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS) The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references. The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques. The book chapters are lucidly illustrated with numerical examples and simulations. The book chapters discuss details of applications and future research areas.
This book highlights applications that include machine learning methods to enhance new developments in complex and unmanned systems. The contents are organized from the applications requiring few methods to the ones combining different methods and discussing their development and hardware/software implementation. The book includes two parts: the first one collects machine learning applications in complex systems, mainly discussing developments highlighting their modeling and simulation, and hardware implementation. The second part collects applications of machine learning in unmanned systems including optimization and case studies in submarines, drones, and robots. The chapters discuss miscellaneous applications required by both complex and unmanned systems, in the areas of artificial intelligence, cryptography, embedded hardware, electronics, the Internet of Things, and healthcare. Each chapter provides guidelines and details of different methods that can be reproduced in hardware/software and discusses future research. Features Provides details of applications using machine learning methods to solve real problems in engineering Discusses new developments in the areas of complex and unmanned systems Includes details of hardware/software implementation of machine learning methods Includes examples of applications of different machine learning methods for future lines for research in the hot topic areas of submarines, drones, robots, cryptography, electronics, healthcare, and the Internet of Things This book can be used by graduate students, industrial and academic professionals to examine real case studies in applying machine learning in the areas of modeling, simulation, and optimization of complex systems, cryptography, electronics, healthcare, control systems, Internet of Things, security, and unmanned systems such as submarines, drones, and robots.
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
What is an artificial intelligence (AI)-enabled drone and what can it do? Are AI-enabled drones better than human-controlled drones? This book will answer these questions and more, and empower you to develop your own AI-enabled drone. You'll progress from a list of specifications and requirements, in small and iterative steps, which will then lead to the development of Unified Modeling Language (UML) diagrams based in part to the standards established by for the Robotic Operating System (ROS). The ROS architecture has been used to develop land-based drones. This will serve as a reference model for the software architecture of unmanned systems. Using this approach you'll be able to develop a fully autonomous drone that incorporates object-oriented design and cognitive deep learning systems that adapts to multiple simulation environments. These multiple simulation environments will also allow you to further build public trust in the safety of artificial intelligence within drones and small UAS. Ultimately, you'll be able to build a complex system using the standards developed, and create other intelligent systems of similar complexity and capability. Intelligent Autonomous Drones with Cognitive Deep Learning uniquely addresses both deep learning and cognitive deep learning for developing near autonomous drones. What You’ll Learn Examine the necessary specifications and requirements for AI enabled drones for near-real time and near fully autonomous drones Look at software and hardware requirements Understand unified modeling language (UML) and real-time UML for design Study deep learning neural networks for pattern recognition Review geo-spatial Information for the development of detailed mission planning within these hostile environments Who This Book Is For Primarily for engineers, computer science graduate students, or even a skilled hobbyist. The target readers have the willingness to learn and extend the topic of intelligent autonomous drones. They should have a willingness to explore exciting engineering projects that are limited only by their imagination. As far as the technical requirements are concerned, they must have an intermediate understanding of object-oriented programming and design.
This book addresses many applications of artificial intelligence in robotics, namely AI using visual and motional input. Robotic technology has made significant contributions to daily living, industrial uses, and medicinal applications. Machine learning, in particular, is critical for intelligent robots or unmanned/autonomous systems such as UAVs, UGVs, UUVs, cooperative robots, and so on. Humans are distinguished from animals by capacities such as receiving visual information, adjusting to uncertain circumstances, and making decisions to take action in a complex system. Significant progress has been made in robotics toward human-like intelligence; yet, there are still numerous unresolved issues. Deep learning, reinforcement learning, real-time learning, swarm intelligence, and other developing approaches such as tiny-ML have been developed in recent decades and used in robotics. Artificial intelligence is being integrated into robots in order to develop advanced robotics capable of performing multiple tasks and learning new things with a better perception of the environment, allowing robots to perform critical tasks with human-like vision to detect or recognize various objects. Intelligent robots have been successfully constructed using machine learning and deep learning AI technology. Robotics performance is improving as higher quality, and more precise machine learning processes are used to train computer vision models to recognize different things and carry out operations correctly with the desired outcome. We believe that the increasing demands and challenges offered by real-world robotic applications encourage academic research in both artificial intelligence and robotics. The goal of this book is to bring together scientists, specialists, and engineers from around the world to present and share their most recent research findings and new ideas on artificial intelligence in robotics.
A large international conference on Advances in Machine Learning and Systems Engineering was held in UC Berkeley, California, USA, October 20-22, 2009, under the auspices of the World Congress on Engineering and Computer Science (WCECS 2009). Machine Learning and Systems Engineering contains forty-six revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Expert system, Intelligent decision making, Knowledge-based systems, Knowledge extraction, Data analysis tools, Computational biology, Optimization algorithms, Experiment designs, Complex system identification, Computational modeling, and industrial applications. Machine Learning and Systems Engineering offers the state of the art of tremendous advances in machine learning and systems engineering and also serves as an excellent reference text for researchers and graduate students, working on machine learning and systems engineering.
The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.
This book introduces basic machine learning concepts and applications for a broad audience that includes students, faculty, and industry practitioners. We begin by describing how machine learning provides capabilities to computers and embedded systems to learn from data. A typical machine learning algorithm involves training, and generally the performance of a machine learning model improves with more training data. Deep learning is a sub-area of machine learning that involves extensive use of layers of artificial neural networks typically trained on massive amounts of data. Machine and deep learning methods are often used in contemporary data science tasks to address the growing data sets and detect, cluster, and classify data patterns. Although machine learning commercial interest has grown relatively recently, the roots of machine learning go back to decades ago. We note that nearly all organizations, including industry, government, defense, and health, are using machine learning to address a variety of needs and applications. The machine learning paradigms presented can be broadly divided into the following three categories: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning algorithms focus on learning a mapping function, and they are trained with supervision on labeled data. Supervised learning is further sub-divided into classification and regression algorithms. Unsupervised learning typically does not have access to ground truth, and often the goal is to learn or uncover the hidden pattern in the data. Through semi-supervised learning, one can effectively utilize a large volume of unlabeled data and a limited amount of labeled data to improve machine learning model performances. Deep learning and neural networks are also covered in this book. Deep neural networks have attracted a lot of interest during the last ten years due to the availability of graphics processing units (GPU) computational power, big data, and new software platforms. They have strong capabilities in terms of learning complex mapping functions for different types of data. We organize the book as follows. The book starts by introducing concepts in supervised, unsupervised, and semi-supervised learning. Several algorithms and their inner workings are presented within these three categories. We then continue with a brief introduction to artificial neural network algorithms and their properties. In addition, we cover an array of applications and provide extensive bibliography. The book ends with a summary of the key machine learning concepts.
Welcome to "Mastering Machine Learning: A Comprehensive Guide to Success." In this book, we embark on an exciting journey into the world of machine learning (ML), exploring its concepts, techniques, and practical applications. Whether you are a beginner taking your first steps into the field or an experienced practitioner seeking to deepen your knowledge, this comprehensive guide will equip you with the tools, strategies, and insights needed to succeed in the ever-evolving landscape of ML. Machine learning is a rapidly advancing field that has revolutionized industries and transformed the way we tackle complex problems. From personalized recommendations and speech recognition systems to autonomous vehicles and medical diagnostics, machine learning has become an integral part of our daily lives. Its ability to analyze vast amounts of data, identify patterns, and make predictions has paved the way for groundbreaking advancements across various domains. However, mastering machine learning requires more than just understanding the algorithms and techniques. It requires a holistic approach that encompasses data collection and preparation, exploratory data analysis, model building, evaluation, deployment, and continuous learning. It also demands a deep understanding of the ethical and social implications of machine learning, ensuring responsible and fair use of this powerful technology. In this book, we have carefully crafted 20 comprehensive chapters that cover a wide range of topics, from the fundamentals of machine learning to advanced techniques and future trends. Each chapter provides a deep dive into a specific aspect of machine learning, offering tips, recommendations, and strategies for success. You will learn about various algorithms, data preprocessing techniques, model evaluation methods, interpretability approaches, and much more. Throughout the book, we emphasize a practical approach to machine learning. Real-world examples, case studies, and hands-on exercises are incorporated to help you gain a deeper understanding of the concepts and apply them to your own projects. We believe that active learning and practical experience are crucial for mastering machine learning, and we encourage you to explore, experiment, and build your own models. While this book serves as a comprehensive guide, it is important to note that machine learning is a rapidly evolving field. New algorithms, techniques, and technologies are constantly emerging, and staying up-to-date with the latest advancements is essential. However, the principles and foundations discussed in this book will provide you with a solid framework to adapt and navigate the ever-changing landscape of machine learning. Whether you are an aspiring data scientist, a software engineer, a researcher, or a business professional, this book is designed to be your trusted companion in your journey to mastering machine learning. By the time you reach the end, you will have gained a deep understanding of the fundamental concepts, acquired practical skills for applying machine learning in real-world scenarios, and developed the mindset needed to tackle complex challenges and drive innovation. Get ready to embark on an exciting adventure into the world of machine learning. Let's begin our journey towards mastering machine learning and unlocking its full potential. Happy learning!