Download Free Machine Learning Based Fault Diagnosis For Industrial Engineering Systems Book in PDF and EPUB Free Download. You can read online Machine Learning Based Fault Diagnosis For Industrial Engineering Systems and write the review.

This book provides advanced techniques for precision compensation and fault diagnosis of precision motion systems and rotating machinery. Techniques and applications through experiments and case studies for intelligent precision compensation and fault diagnosis are offered along with the introduction of machine learning and deep learning methods. Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems discusses how to formulate and solve precision compensation and fault diagnosis problems. The book includes experimental results on hardware equipment used as practical examples throughout the book. Machine learning and deep learning methods used in intelligent precision compensation and intelligent fault diagnosis are introduced. Applications to deal with relevant problems concerning CNC machining and rotating machinery in industrial engineering systems are provided in detail along with applications used in precision motion systems. Methods, applications, and concepts offered in this book can help all professional engineers and students across many areas of engineering and operations management that are involved in any part of Industry 4.0 transformation.
This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.
Early and accurate fault detection and diagnosis for modern chemical plants can minimize downtime, increase the safety of plant operations, and reduce manufacturing costs. This book presents the theoretical background and practical techniques for data-driven process monitoring. It demonstrates the application of all the data-driven process monitoring techniques to the Tennessee Eastman plant simulator, and looks at the strengths and weaknesses of each approach in detail. A plant simulator and problems allow readers to apply process monitoring techniques.
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.
Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences
Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.
Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers - mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more Gives numerical and simulation results in each chapter to reflect engineering practices
Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
This book discusses smart technologies and their influence in the field of manufacturing and industrial systems engineering, in the context of performability enhancement, and explores the development of the workforce for the execution of such smart and advanced technologies. Smart Technologies for Improved Performance of Manufacturing Systems and Services discusses the integration of smart technology into the production process and supply chain to enhance the overall performance of manufacturing industries. As well as emphasizing the fundamentals of smart technologies, such as artificial intelligence, big data, and cyber-physical systems, it highlights the role that machine learning plays along with other smart technologies. Real-time case studies highlight the applications of smart digital technologies, and research insights into the area of performability and overall sustainable development round out the great range of discussions this reference book has to offer. Managers and stakeholders seeking coverage on techniques and methods for integration into their organizations, as well as students and researchers in the field will find this book very useful.
This book addresses issues related to the integration of digital evolutionary technologies and provides solutions to various challenges encountered during the implementation process. With real-time case studies, the book explains the smart technologies available and their operational applications and benefits in the manufacturing sector. Smart Manufacturing Technologies for Industry 4.0: Integration, Benefits, and Operational Activities assists in the understanding of the shifting paradigm in the manufacturing sector towards smart manufacturing and spotlights these technologies and the effects they are having on existing industries. It showcases Industry 4.0 as a promising research area in its infancy and offers insights into the role smart technologies are playing now and into the future. The book focuses on smart technologies’ rudiments, implementation, and integration for organizational development and offers insights on how to achieve resiliency through and because of these technologies. This book presents real-time implementation discussions along with case studies that emphasize benefits and operational activities for engineers and managers. It’s also a very useful book for technology developers, academicians, data scientists, industrial engineers, researchers, and students interested in uncovering the latest innovations in a field that seeks current research on products and services.