Download Free Machine Learning And Biometrics Book in PDF and EPUB Free Download. You can read online Machine Learning And Biometrics and write the review.

Machine Learning for Biometrics: Concepts, Algorithms and Applications highlights the fundamental concepts of machine learning, processing and analyzing data from biometrics and provides a review of intelligent and cognitive learning tools which can be adopted in this direction. Each chapter of the volume is supported by real-life case studies, illustrative examples and video demonstrations. The book elucidates various biometric concepts, algorithms and applications with machine intelligence solutions, providing guidance on best practices for new technologies such as e-health solutions, Data science, Cloud computing, and Internet of Things, etc. In each section, different machine learning concepts and algorithms are used, such as different object detection techniques, image enhancement techniques, both global and local feature extraction techniques, and classifiers those are commonly used data science techniques. These biometrics techniques can be used as tools in Cloud computing, Mobile computing, IOT based applications, and e-health care systems for secure login, device access control, personal recognition and surveillance. - Covers different machine intelligence concepts, algorithms and applications in the field of cybersecurity, e-health monitoring, secure cloud computing and secure IOT based operations - Explores advanced approaches to improve recognition performance of biometric systems with the use of recent machine intelligence techniques - Introduces detection or segmentation techniques to detect biometric characteristics from the background in the input sample
We are entering the era of big data, and machine learning can be used to analyze this deluge of data automatically. Machine learning has been used to solve many interesting and often difficult real-world problems, and the biometrics is one of the leading applications of machine learning. This book introduces some new techniques on biometrics and machine learning, and new proposals of using machine learning techniques for biometrics as well. This book consists of two parts: "Biometrics" and "Machine Learning for Biometrics." Parts I and II contain four and three chapters, respectively. The book is reviewed by editors: Prof. Jucheng Yang, Prof. Dong Sun Park, Prof. Sook Yoon, Dr. Yarui Chen, and Dr. Chuanlei Zhang.
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
Deep Learning is now synonymous with applied machine learning. Many technology giants (e.g. Google, Microsoft, Apple, IBM) as well as start-ups are focusing on deep learning-based techniques for data analytics and artificial intelligence. This technology applies quite strongly to biometrics. This book covers topics in deep learning, namely convolutional neural networks, deep belief network and stacked autoencoders. The focus is also on the application of these techniques to various biometric modalities: face, iris, palmprint, and fingerprints, while examining the future trends in deep learning and biometric research. Contains chapters written by authors who are leading researchers in biometrics. Presents a comprehensive overview on the internal mechanisms of deep learning. Discusses the latest developments in biometric research. Examines future trends in deep learning and biometric research. Provides extensive references at the end of each chapter to enhance further study.
"Pattern Recognition, Machine Intelligence and Biometrics" covers the most recent developments in Pattern Recognition and its applications, using artificial intelligence technologies within an increasingly critical field. It covers topics such as: image analysis and fingerprint recognition; facial expressions and emotions; handwriting and signatures; iris recognition; hand-palm gestures; and multimodal based research. The applications span many fields, from engineering, scientific studies and experiments, to biomedical and diagnostic applications, to personal identification and homeland security. In addition, computer modeling and simulations of human behaviors are addressed in this collection of 31 chapters by top-ranked professionals from all over the world in the field of PR/AI/Biometrics. The book is intended for researchers and graduate students in Computer and Information Science, and in Communication and Control Engineering. Dr. Patrick S. P. Wang is a Professor Emeritus at the College of Computer and Information Science, Northeastern University, USA, Zijiang Chair of ECNU, Shanghai, and NSC Visiting Chair Professor of NTUST, Taipei.
This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined. Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories. Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.
Human Recognition in Unconstrained Environments provides a unique picture of the complete ‘in-the-wild’ biometric recognition processing chain; from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. Coverage includes: Data hardware architecture fundamentals Background subtraction of humans in outdoor scenes Camera synchronization Biometric traits: Real-time detection and data segmentation Biometric traits: Feature encoding / matching Fusion at different levels Reaction against security incidents Ethical issues in non-cooperative biometric recognition in public spaces With this book readers will learn how to: Use computer vision, pattern recognition and machine learning methods for biometric recognition in real-world, real-time settings, especially those related to forensics and security Choose the most suited biometric traits and recognition methods for uncontrolled settings Evaluate the performance of a biometric system on real world data Presents a complete picture of the biometric recognition processing chain, ranging from data acquisition to the reaction procedures against security incidents Provides specific requirements and issues behind each typical phase of the development of a robust biometric recognition system Includes a contextualization of the ethical/privacy issues behind the development of a covert recognition system which can be used for forensics and security activities
Healthcare sectors often deal with a large amount of data related to patients’ care and hospital workforce management. Mistakes occur, and the impending results are disastrous for individuals’ personal identity information. However, an innovative and reliable way to safeguard the identity of individuals and provide protection of medical records from criminals is already in effect. Design and Implementation of Healthcare Biometric Systems provides innovative insights into medical identity theft and the benefits behind biometrics technologies that could be offered to protect medical records from hackers and malicious users. The content within this publication represents the work of ASD screening systems, healthcare management, and patient rehabilitation. It is designed for educators, researchers, faculty members, industry practitioners, graduate students, and professionals working with healthcare services and covers topics centered on understanding the practical essence of next-generation healthcare biometrics systems and future research directions.
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear
A breakthrough approach to improving biometrics performanceConstructing robust information processing systems for face and voice recognitionSupporting high-performance data fusion in multimodal systemsAlgorithms, implementation techniques, and application examples Machine learning: driving significant improvements in biometric performance As they improve, biometric authentication systems are becoming increasingly indispensable for protecting life and property. This book introduces powerful machine learning techniques that significantly improve biometric performance in a broad spectrum of application domains. Three leading researchers bridge the gap between research, design, and deployment, introducing key algorithms as well as practical implementation techniques. They demonstrate how to construct robust information processing systems for biometric authentication in both face and voice recognition systems, and to support data fusion in multimodal systems. Coverage includes: How machine learning approaches differ from conventional template matchingTheoretical pillars of machine learning for complex pattern recognition and classificationExpectation-maximization (EM) algorithms and support vector machines (SVM)Multi-layer learning models and back-propagation (BP) algorithmsProbabilistic decision-based neural networks (PDNNs) for face biometricsFlexible structural frameworks for incorporating machine learning subsystems in biometric applicationsHierarchical mixture of experts and inter-class learning strategies based on class-based modular networksMulti-cue data fusion techniques that integrate face and voice recognitionApplication case studies