Download Free Lyman Continuum And Lyman Alpha Emission From Galaxies At High Redshift Book in PDF and EPUB Free Download. You can read online Lyman Continuum And Lyman Alpha Emission From Galaxies At High Redshift and write the review.

As late as 1995, the anticipated widespread population of primeval galaxies remained at large, lurking undetected at unknown redshifts, with undiscovered properties. We present results from our efforts to detect and characterize primeval galaxies by their signature high-redshift Lyman-alpha emission lines utilizing two observational techniques: serendipitous slit spectroscopy and narrowband imaging. By pushing these techniques to their utmost limits, we probe the Lyman-alpha-emitting galaxy population out to redshifts as high as z = 6.5. Galaxies at this epoch reside in a universe which is just 800 million years old, a mere 6% of its current age. As such, this work provides one account of the manner by which observational cosmology has recently shifted from merely marveling at the incredible lookback times implied by the first few high-redshift detections, to the routine assembly of high-redshift datasets designed to address specific astrophysical issues.
The reference work on astrophysics to provide a comprehensive introduction to the physics of Interstellar Matter. The objective of the book is to show how physics can be applied to the understanding and diagnosis of the phase structure, the physical conditions and the chemical make-up and evolution of the interstellar medium. Unlike other textbooks in the field, here a more systematic approach has been adopted based on the authors' lecture course experience. It is aimed primarily at those undertaking post-graduate courses, or those doing advanced projects as part of honours undergraduate courses in physics or astrophysics.
Thoroughly revised and expanded throughout, the new edition is a graduate-level text and reference book on gaseous nebulae, nova and supernova remnants. Much of the new data and new images are from the Hubble Space Telescope with two wholly new chapters being added along with other new features. The previous edition which was tried and tested for thirty years has now been succeeded by a revised, updated, larger edition, which will be valuable to anyone seriously interested in astrophysics.
This volume presents lectures of the XI Canary Islands Winter School of Astrophysics written by experts in the field.
The dawn of the first stars, galaxies and black holes signaled a fundamental milestone in our Universe’s evolution: the Epoch of Reionization. The light from these galactic ancestors began spreading out, ionizing virtually every atom in existence. Our Universe transitioned from darkness to light, from cold to hot, from simple and boring to the wondrous cosmic zoo we see around us today. Despite its importance, observations of reionization have been few, and their interpretation has been highly controversial. Fortunately, this is rapidly changing. We will soon enter the "Big Data” era of this mysterious epoch, driven by an upcoming wave of observations with state-of-the-art telescopes as well as new sophisticated analysis tools. The aim of this volume is to summarize the current status and future outlook of the reionization field. We bring together leading experts in many sub-disciplines, highlighting the measurements that will illuminate our understanding of reionization and the cosmic dawn: (i) 21cm interferometry; (ii) high-redshift quasar spectra; (iii) high-redshift galaxy surveys; (iv) primary and secondary anisotropies of the Cosmic Microwave Background; (v) high-resolution studies of the metal content of early galaxies. We seek a roadmap to interpreting the wealth of upcoming observations. What is the best use of limited observational resources? How do we develop theoretical tools tailored for each observation? Ultimately, what will we learn about the epoch of reionization and our galactic ancestors?
A concise introduction to cosmology and how light first emerged in the universe Though astrophysicists have developed a theoretical framework for understanding how the first stars and galaxies formed, only now are we able to begin testing those theories with actual observations of the very distant, early universe. We are entering a new and exciting era of discovery that will advance the frontiers of knowledge, and this book couldn't be more timely. It covers all the basic concepts in cosmology, drawing on insights from an astronomer who has pioneered much of this research over the past two decades. Abraham Loeb starts from first principles, tracing the theoretical foundations of cosmology and carefully explaining the physics behind them. Topics include the gravitational growth of perturbations in an expanding universe, the abundance and properties of dark matter halos and galaxies, reionization, the observational methods used to detect the earliest galaxies and probe the diffuse gas between them—and much more. Cosmology seeks to solve the fundamental mystery of our cosmic origins. This book offers a succinct and accessible primer at a time when breathtaking technological advances promise a wealth of new observational data on the first stars and galaxies. Provides a concise introduction to cosmology Covers all the basic concepts Gives an overview of the gravitational growth of perturbations in an expanding universe Explains the process of reionization Describes the observational methods used to detect the earliest galaxies
Since the 1980s the cross-disciplinary, multidimensional field of links between cosmology and particle physics has been widely recognised by theorists, studying cosmology, particle and nuclear physics, gravity, as well as by astrophysicists, astronomers, space physicists, experimental particle and nuclear physicists, mathematicians and engineers.The relationship between cosmology and particle physics is now one of the important topics of discussion at any scientific meeting both on astrophysics and high energy physics.Cosmoparticle physics is the result of the mutual relationship between cosmology and particle physics in their search for physical mechanisms of inflation, baryosynthesis, nonbaryonic dark matter, and for fundamental unity of the natural forces underlying them. The set of nontrivial links between cosmological consequences of particle models and the astrophysical data on matter and radiation in the modern universe maintains cosmoarcheology, testing self-consistently particular predictions of particle models on the base of cosmological scenarios, following from them. Complex analysis of all the indirect cosmological, astrophysical and microphysical phenomena makes cosmoparticle physics the science of the world and renders quantitatively definite the correspondence between its micro- and macroscopic structure.This book outlines the principal ideas of the modern particle theory and cosmology, their mutual relationship and the nontrivial correspondence of their physical and astrophysical effects.
The Hubble Deep Field (HDF) is the deepest optical image of the Universe ever obtained. It is the result of a 150-orbit observing programme with the Hubble Space Telescope. It provides a unique resource for researchers studying the formation and evolution of stars and galaxies. This timely volume provides the first comprehensive overview of the HDF and its scientific impact on our understanding in cosmology. It presents articles by a host of world experts who gathered together at an international conference at the Space Telescope Science Institute. The contributions combine observations of the HDF at a variety of wavelengths with the latest theoretical progress in our understanding of the cosmic history of star and galaxy formation. The HDF is set to revolutionize our understanding in cosmology. This book therefore provides an indispensable reference for all graduate students and researchers in observational or theoretical cosmology.
This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The First Galaxies in the Universe starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more. Provides a comprehensive introduction to this exciting frontier in astrophysics Begins from first principles Covers advanced topics such as the first stars and 21-cm cosmology Prepares students for research using the next generation of large telescopes Discusses many open questions to be explored in the coming decade
For the last twenty years astronomy has been developing dramatically. Until the nineteen-fifties, telescopes, spectrometers, and photographic plates consti tuted a relatively simple set of tools which had been refined to a high degree of perfection by the joint efforts of physicists and astronomers. Indeed these tools helped at the birth of modern astrophysics: the discovery of the expan sion of the Universe. Then came radioastronomy and the advent of electronics; the last thirty years have seen the application to astrophysics of a wealth of new experimental techniques, based on the most advanced fields of physics, and a constant interchange of ideas between physicists and astronomers. Last, but not least, modern computers have sharply reduced the burden of dealing with the information painfully extracted from the skies, whether from ever scarce photons, or from the gigantic data flows provided by satellites and large telescopes. The aim of this book is not to give an extensive overview of all the tech niques currently in use in astronomy, nor to provide detailed instructions for preparing or carrying out an astronomical project. Its purpose is methodologi cal: photons are still the main carriers of information between celestial sources and the observer. How we are to collect, sample, measure, and store this infor mation is the unifying theme of the book. Rather than the diversity of tech niques appropriate for each wavelength range, we emphasize the physical and mathematical bases which are common to all wavelength regimes.