Download Free Lyapunov Inequalities And Applications Book in PDF and EPUB Free Download. You can read online Lyapunov Inequalities And Applications and write the review.

This book provides an extensive survey on Lyapunov-type inequalities. It summarizes and puts order into a vast literature available on the subject, and sketches recent developments in this topic. In an elegant and didactic way, this work presents the concepts underlying Lyapunov-type inequalities, covering how they developed and what kind of problems they address. This survey starts by introducing basic applications of Lyapunov’s inequalities. It then advances towards even-order, odd-order, and higher-order boundary value problems; Lyapunov and Hartman-type inequalities; systems of linear, nonlinear, and quasi-linear differential equations; recent developments in Lyapunov-type inequalities; partial differential equations; linear difference equations; and Lyapunov-type inequalities for linear, half-linear, and nonlinear dynamic equations on time scales, as well as linear Hamiltonian dynamic systems. Senior undergraduate students and graduate students of mathematics, engineering, and science will benefit most from this book, as well as researchers in the areas of ordinary differential equations, partial differential equations, difference equations, and dynamic equations. Some background in calculus, ordinary and partial differential equations, and difference equations is recommended for full enjoyment of the content.
Survey on Classical Inequalities provides a study of some of the well known inequalities in classical mathematical analysis. Subjects dealt with include: Hardy-Littlewood-type inequalities, Hardy's and Carleman's inequalities, Lyapunov inequalities, Shannon's and related inequalities, generalized Shannon functional inequality, operator inequalities associated with Jensen's inequality, weighted Lp -norm inequalities in convolutions, inequalities for polynomial zeros as well as applications in a number of problems of pure and applied mathematics. It is my pleasure to express my appreciation to the distinguished mathematicians who contributed to this volume. Finally, we wish to acknowledge the superb assistance provided by the staff of Kluwer Academic Publishers. June 2000 Themistocles M. Rassias Vll LYAPUNOV INEQUALITIES AND THEIR APPLICATIONS RICHARD C. BROWN Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA. email address:[email protected] DON B. HINTON Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA. email address: [email protected] Abstract. For nearly 50 years Lyapunov inequalities have been an important tool in the study of differential equations. In this survey, building on an excellent 1991 historical survey by Cheng, we sketch some new developments in the theory of Lyapunov inequalities and present some recent disconjugacy results relating to second and higher order differential equations as well as Hamiltonian systems. 1. Introduction Lyapunov's inequality has proved useful in the study of spectral properties of ordinary differential equations. Typical applications include bounds for eigenvalues, stability criteria for periodic differential equations, and estimates for intervals of disconjugacy.
A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors—noted experts on the topic—offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research.
Converse Lyapunov function theory guarantees the existence of strict Lyapunov functions in many situations, but the functions it provides are often abstract and nonexplicit, and therefore may not lend themselves to engineering applications. Often, even when a system is known to be stable, one still needs explicit Lyapunov functions; however, once an appropriate strict Lyapunov function has been constructed, many robustness and stabilization problems can be solved through standard feedback designs or robustness arguments. Non-strict Lyapunov functions are often readily constructed. This book contains a broad repertoire of Lyapunov constructions for nonlinear systems, focusing on methods for transforming non-strict Lyapunov functions into strict ones. Their explicitness and simplicity make them suitable for feedback design, and for quantifying the effects of uncertainty. Readers will benefit from the authors’ mathematical rigor and unifying, design-oriented approach, as well as the numerous worked examples.
​The eigenvalue problems for quasilinear and nonlinear operators present many differences with the linear case, and a Lyapunov inequality for quasilinear resonant systems showed the existence of eigenvalue asymptotics driven by the coupling of the equations instead of the order of the equations. For p=2, the coupling and the order of the equations are the same, so this cannot happen in linear problems. Another striking difference between linear and quasilinear second order differential operators is the existence of Lyapunov-type inequalities in R^n when p>n. Since the linear case corresponds to p=2, for the usual Laplacian there exists a Lyapunov inequality only for one-dimensional problems. For linear higher order problems, several Lyapunov-type inequalities were found by Egorov and Kondratiev and collected in On spectral theory of elliptic operators, Birkhauser Basel 1996. However, there exists an interesting interplay between the dimension of the underlying space, the order of the differential operator, the Sobolev space where the operator is defined, and the norm of the weight appearing in the inequality which is not fully developed. Also, the Lyapunov inequality for differential equations in Orlicz spaces can be used to develop an oscillation theory, bypassing the classical sturmian theory which is not known yet for those equations. For more general operators, like the p(x) laplacian, the possibility of existence of Lyapunov-type inequalities remains unexplored. ​
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.
In this book the authors reduce a wide variety of problems arising in system and control theory to a handful of convex and quasiconvex optimization problems that involve linear matrix inequalities. These optimization problems can be solved using recently developed numerical algorithms that not only are polynomial-time but also work very well in practice; the reduction therefore can be considered a solution to the original problems. This book opens up an important new research area in which convex optimization is combined with system and control theory, resulting in the solution of a large number of previously unsolved problems.
This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.