Download Free Luminescence And The Solid State Book in PDF and EPUB Free Download. You can read online Luminescence And The Solid State and write the review.

Since the first date of publication of this book in 1991, the subject of phosphors and luminescence has assumed even more importance in the overall scheme of technological development. Many new types of displays have appeared which depend upon phosphors in their operation. Some of these were pure conjecture in 1991 but are a reality in 2004. Descriptions have been included of the newer (as well as the older) types of displays in this edition along with an annotated portrait of the phosphors used in each category. Many of these new light sources promise to displace and make obsolete our current light sources, such as incandescent lamps, fluorescent lamps and the ubiquitous colour Cathode Ray Tube now used in TV and computer monitors. The importance of solid state science are summarized in the introductory chapters of this edition, and many of the chapters have been completely rewritten or revised. Each chapter has a special contribution to make in the overall understanding of the solid state science of phosphors and luminescence. Introduces the reader to the science and art of preparing inorganic luminescent materials Describes how and why luminescent materials exhibit such specific intrinsic properties Describes the science of the solid state and presents the exact formulas and conditions required to make all of the phosphors known at that time
Luminescence of Solids gathers together much of the latest work on luminescent inorganic materials and new physical phenomena. The volume includes chapters covering -- the achievements that have led to the establishment of the fundamental laws of luminescence -- light sources, light-dispersing elements, detectors, and other experimental techniques -- models and mechanisms -- materials preparation, and -- future trends. This international collection of cutting-edge luminescence research is complemented by over 170 illustrations that bring to life the text's many vital concepts.
The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.
The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase their applications across different industries. Emerging Synthesis Techniques for Luminescent Materials is a critical scholarly resource that explores the important field of emerging synthesis techniques of luminescent materials and its practical applications. Featuring coverage on a broad range of topics such as electroluminescence, glow curve analysis, and upconversion, this book is geared towards engineers, academics, researchers, students, professionals, and practitioners seeking current research on photoluminescence and the study of rare earth doped phosphors.
Compared to traditional electrical filaments, arc lamps, and fluorescent lamps, solid-state lighting offers higher efficiency, reliability, and environmentally friendly technology. LED / solid-state lighting is poised to take over conventional lighting due to cost savings—there is pretty much no debate about this. In response to the recent activity in this field, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays covers a range of solid-state devices, technologies, and materials used for lighting and displays. It also examines auxiliary but critical requirements of efficient applications, such as modeling, thermal management, reliability, and smart lighting. The book discusses performance metrics of LEDs such as efficiency, efficacy, current–voltage characteristics, optical parameters like spectral distribution, color temperature, and beam angle before moving on to luminescence theory, injection luminescence, radiative and non-radiative recombination mechanisms, recombination rates, carrier lifetimes, and related topics. This lays down the groundwork for understanding LED operation. The book then discusses energy gaps, light emission, semiconductor material, special equipment, and laboratory facilities. It also covers production and applications of high-brightness LEDs (HBLEDs) and organic LEDs (OLEDs). LEDs represent the landmark development in lighting since the invention of electric lighting, allowing us to create unique, low-energy lighting solutions, not to talk about their minor maintenance expenses. The rapid strides of LED lighting technology over the last few years have changed the dynamics of the global lighting market, and LEDs are expected to be the mainstream light source in the near future. In a nutshell, the book traces the advances in LEDs, OLEDs, and their applications, and presents an up-to-date and analytical perspective of the scenario for audiences of different backgrounds and interests.
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on ‘Fundamentals of Luminescence’ elucidates the theoretical background and fundamental properties of luminescence as applied to solid-state phosphor materials. The book includes the chapters that cover: Basic principles of luminescence, the principal phosphor materials, and their optical properties New developments in principal phosphors in nitrides, perovskite, and silicon carbide Revised lanthanide level locations and its impact on phosphor performance Detailed descriptions of energy transfer and upconversion processes in bulk and nanoscaled particles and core-shell structures Rapid developing organic and polymer luminescent materials and devices
Nitride Phosphors and Solid-State Lighting provides an in-depth introduction to the crystal chemistry, synthesis, luminescence, and applications of phosphor materials for solid-state lighting, mainly focusing on new nitride phosphors. Drawing on their extensive experimental work, the authors offer a multidisciplinary study of phosphor materials tha
Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which deal with solid state chemistry. Luminescence and the Solid State has been written to fulfil this need. The concepts regarding luminescence and phosphors are unique and have been covered extensively providing a useful reference source for anyone requiring such knowledge as a basis for further study. The discussion on the defect state, which is handled in chapter two, can be applied to many other systems, e.g. ceramic superconductors. The book has extensive, useful equations and figures, the derivations of which are simple and easy to follow. This useful, comprehensive text can be used for self-study and should also prove invaluable in a graduate study as an introduction to the solid state and luminescence.
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.
Solid-state laser and luminescent materials activated by rare-earth or transition metals ions are widely used for solid-state lasers, luminescent lamps, flat displays, optical fibre communication systems, and other photonic devices. The unique solid-state electronic properties enable the activators in solids to emit photons efficiently in visible and IR regions. The rapid advances in both materials science and optoelectronics, particularly, the development of new methods of material synthesis and device fabrication, have been stimulating the growing interests in the deep insights of spectroscopic properties of solid-state laser and luminescent materials. This book brings together essential and practical knowledge of spectroscopic physics. This includes, atomic spectroscopy, mathematical theory, rare earth ions in materials, light emission and absorption, spectral properties, non-radiative transitions and energy migration.