Download Free Luis W Alvarez Book in PDF and EPUB Free Download. You can read online Luis W Alvarez and write the review.

During World War II, Luis W. Alvarez participated in the Allies’ development of radar at the MIT Radiation Laboratory, and of the atomic bomb at Los Alamos. He then worked as an experimental physicist on cyclotrons, particle accelerators and bubble chambers at UC-Berkeley with Ernest Lawrence. Later in life, he used cosmic rays to “X ray” an Egyptian pyramid, developed a new theory about the extinction of the dinosaurs, and won the 1968 Nobel prize in physics for his work on elementary particles. In this autobiography, Alvarez shares insights on the process of scientific discovery, risk-taking in science and how theoretical and experimental physics interact. “[A] delightful autobiography... [A] fascinating book... It should be read by everyone who is interested in science and adventure, or who just wants to meet one of our most fascinating contemporaries.” — James Trefil, New York Times Book Review “Beyond its self-portrait, Alvarez provides an exceptionally clear view of the world of science.” — Alan Lightman, Washington Post Book World “This is a richly absorbing autobiography... Personally as well as scientifically forthright and plainspoken, [Alvarez] holds the reader with the story of his life as a scientist, much of the time at Berkeley, Calif., working with such men as Robert Oppenheimer, Ernest Lawrence and Enrico Fermi.” — Publishers Weekly “A gripping book. It succeeds well in making the scientific experience and the excitement of discovery accessible to the general reader.” — Richard L. Garwin,Physics Today “A fascinating life.” — Elena Brunet, Los Angeles Times “One of the best popular books on science to emerge from the laboratory in years.” — Henry Kisor, Chicago Sun-Times “Luis W. Alvarez has an unsurpassed reputation among scientists for a lifelong record of crucial participation in important discoveries in pure and applied science. In this book he performs an additional service by revealing his thought processes.” — Philip Abelson, Science Advisor, American Association for the Advancement of Science
Sixty-five million years ago, a comet or asteroid larger than Mount Everest slammed into the Earth, inducing an explosion equivalent to the detonation of a hundred million hydrogen bombs. Vaporized detritus blasted through the atmosphere upon impact, falling back to Earth around the globe. Disastrous environmental consequences ensued: a giant tsunami, continent-scale wildfires, darkness, and cold, followed by sweltering greenhouse heat. When conditions returned to normal, half the plant and animal genera on Earth had perished. This horrific chain of events is now widely accepted as the solution to a great scientific mystery: what caused the extinction of the dinosaurs? Walter Alvarez, one of the Berkeley scientists who discovered evidence of the impact, tells the story behind the development of the initially controversial theory. It is a saga of high adventure in remote locations, of arduous data collection and intellectual struggle, of long periods of frustration ended by sudden breakthroughs, of friendships made and lost, and of the exhilaration of discovery that forever altered our understanding of Earth's geological history.
Luis W. Alvarez has had a breathtakingly varied and important career of discovery, adventure, and invention. The winner of the 1968 Nobel Prize in physics for his work on subatomic particles, Alvarez participated as a scientific observer of the Hiroshima bombing mission, formulated the asteroid theory of dinosaur extinctions, discovered the radioactivity of tritium, took x-rays of the Second Pyramid at Giza, designed the Berkeley proton linear accelerator, first observed fundamental particle resonances, created the variable-focus thin lens, analyzed the Kennedy assassination film, and invented the Ground Control Approach radar system for airplane landings, to name but a few of his experiences and accomplishments. Discovering Alvarez collects articles by this innovative physicist, documenting his outstanding contributions. The articles, which span his career, are accompanied by a remarkable collection of commentary by the colleagues and students who worked closely with Alvarez on each project or discovery.
http://www.worldscientific.com/worldscibooks/10.1142/3729
Widely regarded as a classic in its field, Constructing Quarks recounts the history of the post-war conceptual development of elementary-particle physics. Inviting a reappraisal of the status of scientific knowledge, Andrew Pickering suggests that scientists are not mere passive observers and reporters of nature. Rather they are social beings as well as active constructors of natural phenomena who engage in both experimental and theoretical practice. "A prodigious piece of scholarship that I can heartily recommend."—Michael Riordan, New Scientist "An admirable history. . . . Detailed and so accurate."—Hugh N. Pendleton, Physics Today
Flamboyant zoot suit culture, with its ties to fashion, jazz and swing music, jitterbug and Lindy Hop dancing, unique patterns of speech, and even risqué experimentation with gender and sexuality, captivated the country's youth in the 1940s. The Power of the Zoot is the first book to give national consideration to this famous phenomenon. Providing a new history of youth culture based on rare, in-depth interviews with former zoot-suiters, Luis Alvarez explores race, region, and the politics of culture in urban America during World War II. He argues that Mexican American and African American youths, along with many nisei and white youths, used popular culture to oppose accepted modes of youthful behavior, the dominance of white middle-class norms, and expectations from within their own communities.
This book provides an introduction to Quantum Field Theory (QFT) at an elementary level—with only special relativity, electromagnetism and quantum mechanics as prerequisites. For this fresh approach to teaching QFT, based on numerous lectures and courses given by the authors, a representative sample of topics has been selected containing some of the more innovative, challenging or subtle concepts. They are presented with a minimum of technical details, the discussion of the main ideas being more important than the presentation of the typically very technical mathematical details necessary to obtain the final results. Special attention is given to the realization of symmetries in particle physics: global and local symmetries, explicit, spontaneously broken, and anomalous continuous symmetries, as well as discrete symmetries. Beyond providing an overview of the standard model of the strong, weak and electromagnetic interactions and the current understanding of the origin of mass, the text enumerates the general features of renormalization theory as well as providing a cursory description of effective field theories and the problem of naturalness in physics. Among the more advanced topics the reader will find are an outline of the first principles derivation of the CPT theorem and the spin-statistics connection. As indicated by the title, the main aim of this text is to motivate the reader to study QFT by providing a self-contained and approachable introduction to the most exciting and challenging aspects of this successful theoretical framework.
"A thrilling synthesis from a brilliant scientist who discovered one of the most important chapters in our history." —Sean B. Carroll Big History, the field that integrates traditional historical scholarship with scientific insights to study the full sweep of our universe, has so far been the domain of historians. Famed geologist Walter Alvarez—best known for the “Impact Theory” explaining dinosaur extinction—has instead championed a science-first approach to Big History. Here he wields his unique expertise to give us a new appreciation for the incredible occurrences—from the Big Bang to the formation of supercontinents, the dawn of the Bronze Age, and beyond—that have led to our improbable place in the universe.
The classic reference for radar and remote sensing engineers, Handbook of Radar for Scattering Statistics for Terrain, has been reissued with updated, practical software for modern data analysis applications. First published in 1989, this update features a new preface, along with three new appendices that explain how to use the new software and graphical user interface. Python- and MATLAB-based software has been utilized so remote sensing and radar engineers can utilize the wealth of statistical data that came with the original book and software. This update combines the book and software, previously sold separately, into a single new product. The text first presents detailed examinations of the statistical behavior of speckle when superimposed on nonuniform terrain. The Handbook of Radar Scattering Statistics for Terrain then supports system design and signal processing applications with a complete database of calibrated backscattering coefficients. Compiled over 30 years, the statistical summaries of radar backscatter from terrain offers you over 400,000 data points compiled in tabular format. With this text, you'll own the most comprehensive database of radar terrain scattering statistics ever compiled. Derived from measurements made by both airborne and ground-based scatterometer systems, the database includes information from 114 references. The text provides over 60 tables of backscatter data for 9 different surface categories, all derived under strict quality criteria. Rigorous standards for calibration accuracy, measurement precision, and category identification make the database the most reliable source for scattering statistics ever available.
“Takes readers on illuminating scientific adventure, beginning sixty-six million years ago, that connects dinosaurs, comets, DNA, and the future of the planet.” —Huffington Post In this brilliant exploration of our cosmic environment, the renowned particle physicist and New York Times–bestselling author of Warped Passages and Knocking on Heaven’s Door uses her research into dark matter to illuminate the startling connections between the furthest reaches of space and life here on Earth. Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a devastating cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? In Dark Matter and the Dinosaurs, Lisa Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter embedded in the Milky Way. In a sense, it might have been dark matter that killed the dinosaurs. Working through the background and consequences of this proposal, Randall shares with us the latest findings—established and speculative—regarding the nature and role of dark matter and the origin of the Universe, our galaxy, our Solar System, and life, along with the process by which scientists explore new concepts. In Dark Matter and the Dinosaurs, Randall tells a breathtaking story that weaves together the cosmos’ history and our own, illuminating the deep relationships that are critical to our world and the astonishing beauty inherent in the most familiar things. “Randall has woven a beautiful account of how life on Earth is intimately connected to the cosmos.” —The Daily Telegraph (UK)