Download Free Low Temperature Plasma For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Low Temperature Plasma For Biomedical Applications and write the review.

The first book dedicated exclusively to plasma medicine for graduate students and researchers in physics, engineering, biology, medicine and biochemistry.
Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.
There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.
Low temperature plasma in medicine is a new field that rose from the research in the application of cold plasmas in bioengineering. Plasma medicine is an innovative and promising multidisciplinary novel field of research covering plasma physics, life sciences, and clinical medicine to apply physical plasma for therapeutic applications. Emerging Developments and Applications of Low Temperature Plasma explores all areas of experimental, computational, and theoretical study of low temperature and atmospheric plasmas and provides a collection of exciting new research on the fundamental aspects of low temperature and pressure plasmas and their applications. Covering topics such as carbon nanotubes, foodborne pathogens, and plasma formation, this book is an essential resource for research groups, plasma-based industries, plasma aerodynamics industries, metal and cutlery industries, medical institutions, researchers, and academicians.
Cold atmospheric plasma (CAP) emerges as a possible new modality for cancer treatment. This book provides a comprehensive introduction into fundamentals of the CAP and plasma devices used in plasma medicine. An analysis of the mechanisms of plasma interaction with cancer and normal cells including description of possible mechanisms of plasma selectivity is included. Recent advances in the field, the primary challenges and future directions are presented.
This comprehensive text is suitable for researchers and graduate students of a ‘hot’ new topic in medical physics. Written by the world’s leading experts, this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medical applications, the medicine to apply the technology not only in-vitro but also in-vivo testing and the biology to understand complicated bio-chemical processes involved in plasma interaction with living tissues.
Plasma Medical Science describes the progress that has been made in the field over the past five years, illustrating what readers must know to be successful. As non-thermal, atmospheric pressure plasma has been applied for a wide variety of medical fields, including wound healing, blood coagulation, and cancer therapy, this book is a timely resource on the topics discussed. - Provides a dedicated reference for this emerging topic - Discusses the state-of-the-art developments in plasma technology - Introduces topics of plasma biophysics and biochemistry that are required to understand the application of the technology for plasma medicine - Brings together diverse experience in this field in one reference text - Provides a roadmap for future developments in the area
This book presents the state of the art in clinical plasma medicine and outlines translational research strategies. Written by an international group of authors, it is divided into four parts. Part I is a detailed introduction and includes basic and recent research information on plasma sciences, plasma devices and mechanisms of biological plasma effects. Parts II and III provide valuable clinical insights f.e. into the treatment of superficial contaminations, ulcerations, wounds, treatment of cells in cancer, special indications like in heart surgery, dentistry, palliative treatment in head and neck cancer or the use of plasma in hygiene. Part IV offers information on how and where to qualify in plasma medicine and which companies produce and supply medical devices and is thus of particular interest to medical practitioners. This comprehensive book offers a sciences based practical to the clinical use of plasma and includes an extended selection of scientific medical data and translational literature.
Low-temperature plasmas (LTP) at atmospheric gas pressure play an increasing role in biomedical applications. The experimentally observed benefits of LTP for these applications are attributed to the controllable fluxes of chemically active species that can be produced in air at near room temperatures and delivered to bio-matter to induce desired effects. Recent research on the biomedical applications of LTP has generated new scientific knowledge regarding the interaction of plasma with soft matter including cells, tissues, seeds, and plants. The observed effects of LTP on biological cells are mediated by the plasma-produced reactive oxygen species (ROS) and reactive nitrogen species (RNS). These include hydroxyl, OH, atomic oxygen, O, singlet delta oxygen, O2(1Δ), superoxide, O2-, hydrogen peroxide, H2O2, and nitric oxide, NO. Some of these species are known to play important roles in biology serving as signaling molecules in living organisms. When they come in contact with biological cells these species interact with the lipids and proteins of the cell membrane, enter the cell and increase the intracellular ROS concentrations, which can lead to DNA damage and may compromise the integrity of other cell organelles. ROS and RNS can also trigger cell signaling pathways, which can lead to cellular death by apoptosis or necrosis. Other plasma-generated agents that could play biological roles are charged particles (electrons and ions), UV photons, and electric fields.
Plasma can be defined as the extracellular matrix of blood cells. Plasma components, their role in human health risk evaluation, and their functional and clinical analyses are covered in this book. Furthermore, physical plasma-ionized gas is one of the four fundamental states of matter. This homonym has begun to emerge because it can interact with living systems. The physical plasma biomedical applications are reviewed in drug delivery and wound healing medical applications. This approach revolutionizes the therapeutic approaches in medicine and may open up new concepts and clinical applications. The book is an essential source for researchers in the field and provides a platform for different professions.