Download Free Low Temperature Epitaxial Growths Of Iii Nitride Semiconductors On Ito Glass Substrates Book in PDF and EPUB Free Download. You can read online Low Temperature Epitaxial Growths Of Iii Nitride Semiconductors On Ito Glass Substrates and write the review.

Chapter 1 serves as an introduction to the electronic, optical and physical properties of the nitride material system that have made it a heavily researched group of semiconductors. The need for heteroepitaxy and various commercially successful substrates will be discussed along with the motivation of this thesis. Some general history will be provided as well as the challenges faced by these materials in commercialization. Chapter 2 will focus on current and past growth techniques used for nitrides, outlining how epitaxy occurs in these systems with their respective benefits and faults. Chapter 3 will give an overview on the characterization tools used throughout this research. An understanding of how these tools operate will assist in interpreting data correctly. Combined with knowledge from chapter 2 it may also give insight on what needs to change about growth conditions to optimize growth. Chapter 4 will present the growth results from various characterization tools discussed in chapter 3. Conclusions about the data from each material system will be discussed. Chapter 5 will focus on theoretical calculations for InN. Initial results for InN show it to be the most promising material. A theoretical analysis of common impurities on the electronic band structure of InN will help in interpreting optical properties of the material. The central research contributions of the author in this thesis can be summarized as the development of III-Nitrides growth recipes for each material, characterization of the results, and the application of LCAO theory to the InN system for common impurities found in the growth technique examined.
Low temperature processes for semiconductors have been recently under intensive development to fabricate controlled device structures with minute dimensions in order to achieve the highest device performance and new device functions as well as high integration density. Comprising reviews by experts long involved in the respective pioneering work, this volume makes a useful contribution toward maturing the process of low temperature epitaxy as a whole.
This book presents extensive information on the mechanisms of epitaxial growth in III-nitride compounds, drawing on a state-of-the-art computational approach that combines ab initio calculations, empirical interatomic potentials, and Monte Carlo simulations to do so. It discusses important theoretical aspects of surface structures and elemental growth processes during the epitaxial growth of III-nitride compounds. In addition, it discusses advanced fundamental structural and electronic properties, surface structures, fundamental growth processes and novel behavior of thin films in III-nitride semiconductors. As such, it will appeal to all researchers, engineers and graduate students seeking detailed information on crystal growth and its application to III-nitride compounds.
III-Nitride semiconductor materials OCo (Al, In, Ga)N OCo are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field. Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment. The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals. Sample Chapter(s). Chapter 1: Hydride Vapor Phase Epitaxy of Group III Nitride Materials (540 KB). Contents: Hydride Vapor Phase Epitaxy of Group III Nitride Materials (V Dmitriev & A Usikov); Planar MOVPE Technology for Epitaxy of III-Nitride Materials (M Dauelsberg et al.); Close-Coupled Showerhead MOCVD Technology for the Epitaxy of GaN and Related Materials (E J Thrush & A R Boyd); Molecular Beam Epitaxy for III-N Materials (H Tang & J Webb); Growth and Properties of Nonpolar GaN Films and Heterostructures (Y J Sun & O Brandt); Indium-Nitride Growth by High-Pressure CVD: Real-Time and Ex-Situ Characterization (N Dietz); A New Look on InN (L-W Tu et al.); Growth and Optical/Electrical Properties of Al x Ga 1-x N Alloys in the Full Composition Range (F Yun); Optical Investigation of InGaN/GaN Quantum Well Structures Grown by MOCVD (T Wang); Clustering Nanostructures and Optical Characteristics in InGaN/GaN Quantum-Well Structures with Silicon Doping (Y-C Cheng et al.); III-Nitrides Micro- and Nano-Structures (H M Ng & A Chowdhury); New Developments in Dilute Nitride Semiconductor Research (W Shan et al.). Readership: Scientists; material growers and evaluators; device design, processing engineers; postgraduate and graduate students in electrical & electronic engineering and materials engineering.
This book is on recent experimental and theoretical progress in the rapidly growing field of III-V nitrides. Issues related to crystal growth (bulk and thin films), structure and microstructure, formation of defects, doping, alloying, formation of heterostructures, determination of physical properties and device fabrication and evaluation are addressed. Papers show much progress in the growth and understanding of III-V nitrides and in the production of optoelectronic devices based on these materials. Most exciting is the fact that light-emitting diodes and laser diodes have now reached amazing levels of performance which forecasts a revolution in lighting, optical storage, printing, and display technologies. Topics include: crystal growth- bulk growth, early stages of epitaxy; crystal growth- MOCVD; growth techniques - MBE and HVPE; novel substrates and growth techniques; structural properties; electronic properties; luminescence and recombination; characterization, elemental and stress analysis; physical modelling; device processing, implantation, annealing; device characterization, contacts, degradation; and injection laser diodes and applications.
Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.
"The work presented in this thesis investigates the growth and properties of group III- nitride semiconductors that were grown using the Migration Enhanced Afterglow Epitaxy (MEAglow) method. This work was to enhance the understanding of the MEAglow growth process towards the improvement of quality of the layers grown using this technique. The MEAglow technique applies the migration enhanced epitaxy method in a low pressure plasma-based CVD reactor, which has a potential of producing high quality epitaxial group III-nitride layers at relatively low growth temperatures on large deposition areas. The low temperature pulse growth in metal-rich regime, comprising the MME method was employed under growth pressures between 500 mTorr and 3000 mTorr. As the MME method up to this point has been used only for MBE systems, study of the impact of the growth pressure on the materials properties was necessary. In this work the pressure dependence was mapped to an existing surface phase diagram for MBE systems by calculating the number of nitrogen gas phase collisions and the metalorganic bombardment rate, for the specific to the prototype reactor parameters, to a first approximation. This was done in order to achieve an intermediate regime free of metal droplets for growth in metal-rich regime. High quality epitaxial InN layers were accomplished on extremely thin and smooth Ga2O3 buffer layers. These results indicate a potential for the application of Ga2O3 buffers in InN growth. The MEAglow InN layers were further optimized for growth on commercially available GaN buffer layers and excellent two-dimensional growth was achieved for layers grown under metal-rich conditions at 512 °C. Post-growth annealing studies were carried out for InN layers grown at temperatures below 400 °C to study the limiting processes of the removal of excess nitrogen, believed to be a dominant defect in InN films grown in plasma-based systems at very low temperatures. Variations in GaN stoichiometry under certain growth conditions and the effect of similar growth conditions on MEAglow grown InGaN were also examined. The growth of MEAglow InGaN samples on sapphire substrates was optimized to reduce the indium surface segregation and phase separation of the material."-- from abstract.
A novel process for low-temperature (LT) epitaxial growth of silicon carbide (SiC) by replacing the growth precursor propane with chloro-methane was recently developed at Mississippi State University. However, only limited information was available about the defects and impurity incorporation in the various types of epitaxial layers produced by this new method like blanket epitaxial layers, selectively grown epitaxial mesas, and highly doped epitaxial layers, prior to their comprehensive characterization in this work. Molten potassium hydroxide (KOH) etching, mechanical polishing and a variety of other characterizing techniques were used to delineate and identify the defects both in the epilayer and substrates. Under optimum growth conditions, the concentration of defects in the epitaxial layers was found to be less than that in the substrate, which established the good quality of the LT growth process. Defect concentrations, on selectively grown epitaxial layers, strongly depended on the crystallographic orientation of the mesa sidewall. The addition of HCl to the growth process, aimed at increasing the growth rate, caused a significant concentration of triangular defects (TDs) to be formed in the epitaxial layers. The TDs were traced down to the substrate by a combination of repeated polishing and molten KOH etching steps. The TDs were found not to originate from any substrate defects. Their origin was traced to polycrystalline silicon islands which form on the surface during growth and subsequently get evaporated away, which had made it impossible to detect them and suspect their influence on the TD generation prior to this work. The TDs were found to include single or multiple stacking faults bound by partial dislocations and, in some cases, inclusions of other SiC polytypes. Gradual degradation of the epitaxial morphology was found in heavily aluminum doped p+ layers, with an increase in the level of doping, followed by much steeper degradation when approaching the solubility limit of Al in 4H-SiC. Precipitates were the dominating defect at the highest levels of doping and were observed beyond a doping of 3.5x1020 cm-3. A dislocation generation model for heavily doped epitaxial layers was developed accounting for the stress in the lattice caused by Al doping.