Download Free Low Speed Pre Ignition In Turbo Charged Direct Injection Gasoline Engines Book in PDF and EPUB Free Download. You can read online Low Speed Pre Ignition In Turbo Charged Direct Injection Gasoline Engines and write the review.

The concept of increasing power density is a successful approach to improving the conflict between efficiency and emission behavior of spark-ignition engine drive units for light-duty vehicles. This leads to highly charged gasoline engines with direct injection and high specific torque and power densities, promoting a not yet fully understood combustion anomaly known as low-speed pre-ignition (LSPI). This unpredictable, multicyclic phenomenon limits the depictable in-cylinder pressures, further efficiency gains and engine reliability. Only with a holistic understanding of the LSPI root cause mechanisms and processes can targeted countermeasures be taken and further efficiency gains achieved. A novel methodology pathway for LSPI root cause analysis was developed to accompany the entire LSPI event emergence process path by means of a multi-experimental approach on a modern high efficiency engine. This includes the identification of key LSPI activity – engine parameter specification relations, minimally invasive high-speed endoscopic imaging and further LSPI key experiments. Only the accumulation of inorganic substances originating from lubricating oil additives enables specific deposits/particles to ignite the surrounding mixture over a multicyclic process due to the resulting increased oxidation reactivity. Through a final synthesis step of all results, a multi-cycle oxidation-reactivity-enhanced deposit/particle-driven LSPI root cause mechanism is established.
The research in progress that will be documented in the dissertation will include a detailed analysis of the factors that contribute to combustion instability and cycle-to-cycle variations. Finally, combustion ionization will be used to investigate the low speed sporadic pre-ignition phenomenon (LSPI) which is currently limiting the progress toward higher power density and more efficient turbocharged gasoline engines.
The European Commission is planning to limit emissions under real driving conditions up to high engine loads. RDE (real driving emissions) legislation demands the complete conversion of exhaust gases in the catalytic converter which can only be achieved for spark-ignition engines at lambda=1. High exhaust gas temperatures resulting from late centers of heat release caused by knock can then no longer be limited by mixture enrichment. In addition, higher mean effective pressures are needed to improve the efficiency of SI engines. A strong tendency to knock during stoichiometric combustion in conjunction with high mean effective pressure places exacting demands on the SI engine combustion process. The focus of engine development consequently remains on reducing knock and on avoiding irregular combustion events. In particular, phenomena such as pre-ignition, which is typically observed in downsizing concepts, or extreme knock of the type frequently occurring in highcompression lean-burn concepts, are immense challenges to developers. Contents: Potentials and limits of downsizing | Mega-knock in super-charged gasoline engines interpreted as a localized developing detonation | A contribution to better understanding the pre-ignition phenomenon in highly charged internal combustion engines with direct fuel injection | Minimising autoignition for optimum efficiency in high specific output spark-ignited engines | Reduction in knocking intensity of an SI engine by in-cylinder temperature stratification | New approach to the determination of knock onset | Cylinder pressure-based knock detection – challenges in cylinder pressure indication and application in a new engine-based fuel test method | Irregular combustion: development and calibration of highly boosted SI engines | Optically diagnosing combustion anomalies as part of designing the combustion process | Using surface thermocouples and light conductor measurements to examine the thermal load on a gasoline engine’s components during knocking engine operation | Comparative analysis of low-speed pre-ignition phenomena in SI gasoline and dual fuel diesel-methane engines | LEC-GPN – a new Index for assessing the knock behavior of gaseous fuels for large engines | A statistical modeling approach with detailed chemical kinetics for use in 3DCFD engine knock predictions | Investigation on knocking combustion with reaction kinetics for a turbocharged SIDI engine | Knocking simulation at Mercedes-Benz – application in series production development | The DELTA knocking control – the necessary paradigm shift for engines with high power density | Artificial Intelligence for knock detection | Knock detection strategies based on engine acoustic emission analysis | Continental’s pre-ignition and glow ignition function – detection and avoidance of irregular combustions | Pre-ignition analysis on a turbocharged gasoline engine with direct injection | Knock and irregular combustion – challenges for the new turbocharged, highperformance four-cylinder AMG engine | Simulations and experimental investigations of intermittent pre-ignition series in a turbocharged DISI engine Target group: This book addresses engine developers working for car manufacturers and suppliers. With regard to knocking combustion in spark-ignition engines – irregular combustion – it provides an overview of thermodynamic principals, approaches to measurement and computation together with current trends for mass-production development.
The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.
For decades, scientists and engineers have been working to increase the efficiency of internal combustion engines. For spark-ignition engines, two technical questions in particular are always in focus: 1. How can the air/fuel mixture be optimally ignited under all possible conditions? 2. How can undesirable but recurrent early and self-ignitions in the air/fuel mixture be avoided? Against the background of the considerable efficiency increases currently being sought in the context of developments and the introduction of new fuels, such as hydrogen, methanol, ammonia and other hydrogen derivatives as well as biofuels, these questions are more in the focus than ever. In order to provide a perfect exchange platform for the community of combustion process and system developers from research and development, IAV has organized this combined conference, chaired by Marc Sens. The proceedings presented here represent the collection of all the topics presented at the event and are thus intended to serve as an inspiration and pool of ideas for all interested parties.
The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.
This book looks deeply into the prospects for using ethanol as a greener alternative to fossil fuels and the technical and scientific issues that surround them. Ethanol, with its numerous advantages, has emerged as a promising contender to replace gasoline as a fuel source. Currently, it is commercially available as a blend with gasoline, commonly known as E10 and E25, utilizing various ratios of ethanol. Despite its clear benefits over gasoline, the widespread adoption of ethanol as a fuel remains hindered by its limited availability. In this insightful book, we aim to explore the multifaceted challenges surrounding ethanol's full integration into our energy landscape, employing a comprehensive approach through review manuscripts. Leading worldwide experts, known for their deep understanding of ethanol as a fuel, have contributed to the book. Their valuable insights and contributions enrich the book's content, offering readers a comprehensive exploration of the subject matter. This book is a compelling resource for researchers, energy professionals, and anyone interested in understanding the challenges and opportunities associated with the integration of ethanol as a substitute for gasoline.