Download Free Low Power Reconfigurable Microwave Circuits Using Rf Mems Switches For Wireless Systems Book in PDF and EPUB Free Download. You can read online Low Power Reconfigurable Microwave Circuits Using Rf Mems Switches For Wireless Systems and write the review.

This dissertation presents the research on several different projects. The first project is a via-less CPW RF probe pad to microstrip transition; The second, the third, and the fourth one are reconfigurable microwave circuits using RF MEMS switches: an X-band reconfigurable bandstop filter for wireless RF frontends, an X-band reconfigurable impedance tuner for a class-E high efficiency power amplifier using RF MEMS switches, and a reconfigurable self-similar antenna using RF MEMS switches. The first project was developed in order to facilitate the on-wafer measurement for the second and the third project, since both of them are microstrip transmission line based microwave circuits. A thorough study of the via-less CPW RF probe pad to microstrip transition on silicon substrates was performed and general design rules are derived to provide design guidelines. This research work is then expanded to W-band via-less transition up to 110 GHz. The second project is to develop a low power reconfigurable monolithic bandstop filter operating at 8, 10, 13, and 15 GHz with cantilever beam capacitive MEMS switches. The filter contains microstrip lines and radial stubs that provide different reactances at different frequencies. By electrically actuating different MEMS switches, the different reactances from different radial stubs connecting to these switches will be selected, thus, the filter will resonate at different frequencies. The third project is to develop a monolithic reconfigurable impedance tuner at 10 GHz with the cantilever DC contact MEMS switch. The impedance tuner is a two port network based on a 3bit-3bit digital design, and uses 6 radial shunt stubs that can be selected via integrated DC contact MEMS switches. By selecting different states of the switches, there will be a total of 2^6 = 64 states, which means 64 different impedances will be generated at the output port of the tuner. This will provide a sufficient tuning range for the output port of the power amplifier to maximize the power efficiency. The last project is to integrate the DC contact RF MEMS switches with self-similar planar antennas, to provide a reconfigurable antenna system that radiates with similar patterns over a wide range of frequencies.
This is the first comprehensive book to address the design of RF MEMS-based circuits for use in high performance wireless systems. A groundbreaking research and reference tool, the book enables you to understand the realm of applications of RF MEMS technology; become knowledgeable of the wide variety and performance levels of RF MEMS devices; and partition the architecture of wireless systems to achieve greater levels of performance. This innovative resource also guides you through the design process of RF MEMS-based circuits, and establishes a practical knowledge base for the design of high-yield RF MEMS-based circuits. The book features exercises and detailed case studies on working RF MEMS circuits that help you decide what approaches best fit your design constraints. This unified treatment of RF MEMS-based circuit technology opens up a new world of solutions for meeting the unique challenges of low power/portable wireless products.
This chapter intends to deal with the challenging field of communication systems known as reconfigurable radio-frequency systems. Mainly, it will present and analyze the design of different reconfigurable components based on radio-frequency microelectromechanical systems (RF MEMS) for different applications. This chapter will start with the description of the attractive properties that RF MEMS structures offer, giving flexibility in the RF systems design, and how these properties may be used for the design of reconfigurable RF MEMS-based devices. Then, the chapter will discuss the design, modeling, and simulation of reconfigurable components based on both theoretical modeling and well-known electromagnetic computing tools such as ADS, CST-MWS, and HFSS to evaluate the performance of such devices. Finally, the chapter will deal with the design and performance assessment of RF MEMS-based devices. Non-radiating devices, such as phase shifter and resonators, which are very important components in the hardware RF boards, will be addressed. Also, three types of frequency reconfigurable antennas, for the three different applications (radar, satellite, and wireless communication), will be proposed and evaluated. From this study, based on theoretical design and electromagnetic computing evaluation, it has been shown that RF MEMS-based devices can be an enabling solution in the design of the multiband reconfigurable radio-frequency devices.
Describes the theory, modeling, and design of tunable mm-wave circuits and systems using CMOS, RF MEMS, and microwave liquid crystals.
MEMS by becoming a part of various applications ranging from smartphones to automobiles has become an integral part of our everyday life. MEMS is building synergy between previously unrelated fields such as biology, microelectronics and communications, to improve the quality of human life. The sensors in MEMS gather information from the surrounding, which is then processed by the electronics for decision-making to control the environment. MEMS offers opportunities to miniaturize devices, integrate them with electronics and realize cost savings through batch fabrication. MEMS technology has enhanced many important applications in domains such as consumer electronics, biotechnology and communication and it holds great promise for continued contributions in the future. This book focuses on understanding the design, development and various applications of MEMS sensors.
Microelectromechanical Systems (MEMS) stand poised for the next major breakthrough in the silicon revolution that began with the transistor in the 1960s and has revolutionized microelectronics. MEMS allow one to not only observe and process information of all types from small scale systems, but also to affect changes in systems and the environment at that scale. “RF MEMS Switches and Integrated Switching Circuits” builds on the extensive body of literature that exists in research papers on analytical and numerical modeling and design based on RF MEMS switches and micromachined switching circuits, and presents a unified framework of coverage. This volume includes, but is not limited to, RF MEMS approaches, developments from RF MEMS switches to RF switching circuits, and MEMS switch components in circuit systems. This book also: -Presents RF Switches and switching circuit MEMS devices in a unified framework covering all aspects of engineering innovation, design, modeling, fabrication, control and experimental implementation -Discusses RF switch devices in detail, with both system and component-level circuit integration using micro- and nano-fabrication techniques -Includes an emphasis on design innovation and experimental relevance rather than basic electromagnetic theory and device physics “RF MEMS Switches and Integrated Switching Circuits” is perfect for engineers, researchers and students working in the fields of MEMS, circuits and systems and RFs.
Radio frequency microelectromechanical system (RF-MEMS) switches have demonstrated superior electrical performance (lower loss and higher isolation) compared to semiconductor-based devices to implement reconfigurable microwave and millimeter (mm)-wave circuits. In this chapter, electrostatically actuated RF-MEMS switch configurations that can be easily integrated in uniplanar circuits are presented. The design procedure and fabrication process of RF-MEMS switch topologies able to control the propagating modes of multimodal uniplanar structures (those based on a combination of coplanar waveguide (CPW), coplanar stripline (CPS), and slotline) will be described in detail. Generalized electrical (multimodal) and mechanical models will be presented and applied to the switch design and simulation. The switch-simulated results are compared to measurements, confirming the expected performances. Using an integrated RF-MEMS surface micromachining process, high-performance multimodal reconfigurable circuits, such as phase switches and filters, are developed with the proposed switch configurations. The design and optimization of these circuits are discussed and the simulated results compared to measurements.
A survey of microwave technology tailored for professionals in wireless communications RF Technologies for Low Power Wireless Communications updates recent developments in wireless communications from a hardware design standpoint and offers specialized coverage of microwave technology with a focus on the low power wireless units required in modern wireless systems. It explores results of recent research that focused on a holistic, integrated approach to the topics of materials, devices, circuits, modulation, and architectures rather than the more traditional approach of research into isolated topical areas. Twelve chapters deal with various fundamental research aspects of low power wireless electronics written by world-class experts in each field. The first chapter offers an overview of wireless architecture and performance, followed by detailed coverage of: Advanced GaAs-based HBT designs InP-based devices and circuits Si/SiGe HBT technology Noise in GaN devices Power amplifier architectures and nonlinearities Planar-oriented components MEMS and micromachined components Resonators, filters, and low-noise oscillators Antennas Transceiver front-end architectures With a clear focus and expert contributors, RF Technologies for Low Power Wireless Communications will be of interest to a wide range of electrical engineering disciplines working in wireless technologies.
Microwave and Millimeter Wave Circuits and Systems: Emerging Design, Technologies and Applications provides a wide spectrum of current trends in the design of microwave and millimeter circuits and systems. In addition, the book identifies the state-of-the art challenges in microwave and millimeter wave circuits systems design such as behavioral modeling of circuit components, software radio and digitally enhanced front-ends, new and promising technologies such as substrate-integrated-waveguide (SIW) and wearable electronic systems, and emerging applications such as tracking of moving targets using ultra-wideband radar, and new generation satellite navigation systems. Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate. Key Features: Discusses modeling and design strategies for new appealing applications in the domain of microwave and millimeter wave circuits and systems Written by experts active in the Microwave and Millimeter Wave frequency range (industry and academia) Addresses modeling/design/applications both from the circuit as from the system perspective Covers the latest innovations in the respective fields Each chapter treats a selected problem and challenge within the field of Microwave and Millimeter wave circuits, and contains case studies and examples where appropriate This book serves as an excellent reference for engineers, researchers, research project managers and engineers working in R&D, professors, and post-graduates studying related courses. It will also be of interest to professionals working in product development and PhD students.