Download Free Low Level Waste Legislation Book in PDF and EPUB Free Download. You can read online Low Level Waste Legislation and write the review.

This book reviews the efforts of New York state to site a low-level radioactive waste disposal facility. It evaluates the nature, sources, and quality of the data, analyses, and procedures used by the New York State Siting Commission in its decisionmaking process, which identified five potential sites for low-level waste disposal. Finally, the committee offers a chapter highlighting the lessons in siting low-level radioactive waste facilities that can be learned from New York State's experience.
This Safety Guide provides recommendations on how to meet safety requirements on the disposal of radioactive waste. It is concerned with the disposal of solid radioactive waste by emplacement in designated facilities at or near the land surface. The Safety Guide provides guidance on the development, operation and closure of, and on the regulatory control of, near surface disposal facilities, which are suitable for the disposal of very low level waste and low level waste. The Safety Guide provides guidance on a range of disposal methods, including the emplacement of solid radioactive waste in earthen trenches, in above ground engineered structures, in engineered structures just below the ground surface and in rock caverns, silos and tunnels excavated at depths of up to a few tens of metres underground. It is intended for use primarily by those involved with policy development for, with the regulatory control of, and with the development and operation of near surface disposal facilities.
This report sets out the costs of operating disposal sites for LLW in OECD countries, as well as the factors that may affect the costs of sites being developed.
Naturally occurring radionuclides are found throughout the earth's crust, and they form part of the natural background of radiation to which all humans are exposed. Many human activities-such as mining and milling of ores, extraction of petroleum products, use of groundwater for domestic purposes, and living in houses-alter the natural background of radiation either by moving naturally occurring radionuclides from inaccessible locations to locations where humans are present or by concentrating the radionuclides in the exposure environment. Such alterations of the natural environment can increase, sometimes substantially, radiation exposures of the public. Exposures of the public to naturally occurring radioactive materials (NORM) that result from human activities that alter the natural environment can be subjected to regulatory control, at least to some degree. The regulation of public exposures to such technologically enhanced naturally occurring radioactive materials (TENORM) by the US Environmental Protection Agency (EPA) and other regulatory and advisory organizations is the subject of this study by the National Research Council's Committee on the Evaluation of EPA Guidelines for Exposures to Naturally Occurring Radioactive Materials.
Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
Provides detailed information on the handling, processing and storage techniques most widely used and recommended for waste from non-fuel-cycle activities. The report was designed to meet the needs of developing countries by focusing on the most simple, affordable and reliable techniques and discussing their advantages and limitations.
Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies.* Each chapter focuses on a different matrix used in nuclear waste immobilisation: Cement, bitumen, glass and new materials.* Keeps the most important issues surrounding nuclear waste – such as treatment schemes and technologies, and disposal - at the forefront.
This handbook is a practical aid to legislative drafting that brings together, for the first time, model texts of provisions covering all aspects of nuclear law in a consolidated form. Organized along the same lines as the Handbook on Nuclear Law, published by the IAEA in 2003, and containing updated material on new legal developments, this publication represents an important companion resource for the development of new or revised nuclear legislation, as well as for instruction in the fundamentals of nuclear law. It will be particularly useful for those Member States embarking on new or expanding existing nuclear programmes.
Published as part of the managing radioactive waste safely (MRWS) programme, this white paper sets out the UK Government's framework for managing higher activity radioactive waste in the long-term through geological disposal, coupled with safe and secure interim storage and ongoing research and development to support its optimised implementation. It also invites communities to express an interest in opening up, without commitment, discussions with Government on the possibility of hosting a geological disposal facility at some point in the future. In June 2007 the Government published a MRWS consultation document in conjunction with the devolved administrations for Wales and Northern Ireland. Responses to this consultation have been taken into consideration in the development of this white paper. The paper sets out the framework for the future implementation of geological disposal that includes: the approach to compiling and updating the UK Radioactive Waste Inventory (UKRWI) and using it as a basis for discussion with potential host communities; the Nuclear Decommissioning Authority's technical approach for developing a geological disposal facility, including the use of a staged implementation approach and ongoing research and development to support delivery. The white paper covers the amount of waste for disposal; preparation and planning for geological disposal; protecting people and the environment: regulation, planning and independent scrutiny; site selection using a voluntarism and partnership approach; the site assessment process; timing and next steps.