Download Free Low Latency Big Data Visualisation Book in PDF and EPUB Free Download. You can read online Low Latency Big Data Visualisation and write the review.

September 07-08, 2017 Paris, France Key Topics : Cloud computing, Forecasting from Big Data, Optimization and Big Data, New visualization techniques, Social network analysis, Search and data mining, Complexity and Algorithms, Open Data, ETL (Extract, Transform and Load), OLAP Technologies, Big Data Algorithm, Data Mining Analysis, Kernel Methods, Frequent Pattern Mining, Clustering, Data Privacy and Ethics, Big Data Technologies, Business Analytics, Data Mining Methods and Algorithms, Data Mining Tasks and Processes, Data Mining Applications in Science, Engineering, Healthcare and Medicine, Big Data Applications, Data Mining Tools and Software, Data Warehousing, Artificial Intelligence,
This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part "Technologies and Methods" contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part "Processes and Applications" details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems.
The health technology has become a hot topic in academic research. It employs the theory of social networks into the different levels of the prediction and analysis and has brought new possibilities for the development of technology. This book is a descriptive summary of challenges and methods using disease identification with various case studies from diverse authors across the globe. One of the new buzzwords in healthcare sector that has become popular over years is health informatics. Healthcare professionals must deal with an increasing number of computers and computer programs in their daily work. With rapid growth of digital data, the role of analytics in healthcare has created a significant impact on healthcare professional’s life. Improvements in storage data, computational power and paral- lelization has also contributed to uptake this technology. This book is intended for use by researchers, health informatics professionals, academicians and undergraduate and postgraduate students interested in knowing more about health informatics. It aims to provide a brief overview about informatics, its history and area of practice, laws in health informatics, challenges and technologies in health informatics, applica- tion of informatics in various sectors and so on. Finally, the research avenues in health informatics along with some case studies are discussed.
Big Data Imperatives, focuses on resolving the key questions on everyone's mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.
Master the practical aspects of the CFA Program curriculum with expert instruction for the 2019 exam The same official curricula that CFA Program candidates receive with program registration is now publicly available for purchase. CFA Program Curriculum 2019 Level II, Volumes 1-6 provides the complete Level II curriculum for the 2019 exam, with practical instruction on the Candidate Body of Knowledge (CBOK) and how it is applied, including expert guidance on incorporating concepts into practice. Level II focuses on complex analysis with an emphasis on asset valuation, and is designed to help you use investment concepts appropriately in situations analysts commonly face. Coverage includes ethical and professional standards, quantitative analysis, economics, financial reporting and analysis, corporate finance, equities, fixed income, derivatives, alternative investments, and portfolio management organized into individual study sessions with clearly defined Learning Outcome Statements. Charts, graphs, figures, diagrams, and financial statements illustrate complex concepts to facilitate retention, and practice questions with answers allow you to gauge your understanding while reinforcing important concepts. While Level I introduced you to basic foundational investment skills, Level II requires more complex techniques and a strong grasp of valuation methods. This set dives deep into practical application, explaining complex topics to help you understand and retain critical concepts and processes. Incorporate analysis skills into case evaluations Master complex calculations and quantitative techniques Understand the international standards used for valuation and analysis Gauge your skills and understanding against each Learning Outcome Statement CFA Institute promotes the highest standards of ethics, education, and professional excellence among investment professionals. The CFA Program curriculum guides you through the breadth of knowledge required to uphold these standards. The three levels of the program build on each other. Level I provides foundational knowledge and teaches the use of investment tools; Level II focuses on application of concepts and analysis, particularly in the valuation of assets; and Level III builds toward synthesis across topics with an emphasis on portfolio management.
This book introduces you to the Big Data processing techniques addressing but not limited to various BI (business intelligence) requirements, such as reporting, batch analytics, online analytical processing (OLAP), data mining and Warehousing, and predictive analytics. The book has been written on IBMs Platform of Hadoop framework. IBM Infosphere BigInsight has the highest amount of tutorial matter available free of cost on Internet which makes it easy to acquire proficiency in this technique. This therefore becomes highly vunerable coaching materials in easy to learn steps. The book optimally provides the courseware as per MCA and M. Tech Level Syllabi of most of the Universities. All components of big Data Platform like Jaql, Hive Pig, Sqoop, Flume , Hadoop Streaming, Oozie: HBase, HDFS, FlumeNG, Whirr, Cloudera, Fuse , Zookeeper and Mahout: Machine learning for Hadoop has been discussed in sufficient Detail with hands on Exercises on each.
Gain hands-on experience in building efficient and scalable big data architecture on Kubernetes, utilizing leading technologies such as Spark, Airflow, Kafka, and Trino Key Features Leverage Kubernetes in a cloud environment to integrate seamlessly with a variety of tools Explore best practices for optimizing the performance of big data pipelines Build end-to-end data pipelines and discover real-world use cases using popular tools like Spark, Airflow, and Kafka Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's data-driven world, organizations across different sectors need scalable and efficient solutions for processing large volumes of data. Kubernetes offers an open-source and cost-effective platform for deploying and managing big data tools and workloads, ensuring optimal resource utilization and minimizing operational overhead. If you want to master the art of building and deploying big data solutions using Kubernetes, then this book is for you. Written by an experienced data specialist, Big Data on Kubernetes takes you through the entire process of developing scalable and resilient data pipelines, with a focus on practical implementation. Starting with the basics, you’ll progress toward learning how to install Docker and run your first containerized applications. You’ll then explore Kubernetes architecture and understand its core components. This knowledge will pave the way for exploring a variety of essential tools for big data processing such as Apache Spark and Apache Airflow. You’ll also learn how to install and configure these tools on Kubernetes clusters. Throughout the book, you’ll gain hands-on experience building a complete big data stack on Kubernetes. By the end of this Kubernetes book, you’ll be equipped with the skills and knowledge you need to tackle real-world big data challenges with confidence.What you will learn Install and use Docker to run containers and build concise images Gain a deep understanding of Kubernetes architecture and its components Deploy and manage Kubernetes clusters on different cloud platforms Implement and manage data pipelines using Apache Spark and Apache Airflow Deploy and configure Apache Kafka for real-time data ingestion and processing Build and orchestrate a complete big data pipeline using open-source tools Deploy Generative AI applications on a Kubernetes-based architecture Who this book is for If you’re a data engineer, BI analyst, data team leader, data architect, or tech manager with a basic understanding of big data technologies, then this big data book is for you. Familiarity with the basics of Python programming, SQL queries, and YAML is required to understand the topics discussed in this book.
This book provides detailed descriptions of big data solutions for activity detection and forecasting of very large numbers of moving entities spread across large geographical areas. It presents state-of-the-art methods for processing, managing, detecting and predicting trajectories and important events related to moving entities, together with advanced visual analytics methods, over multiple heterogeneous, voluminous, fluctuating and noisy data streams from moving entities, correlating them with data from archived data sources expressing e.g. entities’ characteristics, geographical information, mobility patterns, mobility regulations and intentional data. The book is divided into six parts: Part I discusses the motivation and background of mobility forecasting supported by trajectory-oriented analytics, and includes specific problems and challenges in the aviation (air-traffic management) and the maritime domains. Part II focuses on big data quality assessment and processing, and presents novel technologies suitable for mobility analytics components. Next, Part III describes solutions toward processing and managing big spatio-temporal data, particularly enriching data streams and integrating streamed and archival data to provide coherent views of mobility, and storing of integrated mobility data in large distributed knowledge graphs for efficient query-answering. Part IV focuses on mobility analytics methods exploiting (online) processed, synopsized and enriched data streams as well as (offline) integrated, archived mobility data, and highlights future location and trajectory prediction methods, distinguishing between short-term and more challenging long-term predictions. Part V examines how methods addressing data management, data processing and mobility analytics are integrated in big data architectures with distinctive characteristics compared to other known big data paradigmatic architectures. Lastly, Part VI covers important ethical issues that research on mobility analytics should address. Providing novel approaches and methodologies related to mobility detection and forecasting needs based on big data exploration, processing, storage, and analysis, this book will appeal to computer scientists and stakeholders in various application domains.