Download Free Low Frequency Intensity Noise In Semiconductor Lasers Book in PDF and EPUB Free Download. You can read online Low Frequency Intensity Noise In Semiconductor Lasers and write the review.

Laser diodes represent a key element in the emerging field of opto electronics which includes, for example, optical communication, optical sensors or optical disc systems. For all these applications, information is either transmitted, stored or read out. The performance of these systems depends to a great deal on the performance of the laser diode with regard to its modulation and noise characteristics. Since the modulation and noise characteristics of laser diodes are of vital importance for optoelectronic systems, the need for a book arises that concentrates on this subject. This book thus closes the gap between books on the device physics of semiconductor lasers and books on system design. Complementary to the specific topics concerning modulation and noise, the first part of this book reviews the basic laser characteristics, so that even a reader without detailed knowledge of laser diodes may follow the text. In order to understand the book, the reader should have a basic knowledge of electronics, semiconductor physics and optical communica tions. The work is primarily written for the engineer or scientist working in the field of optoelectronics; however, since the book is self-contained and since it contains a lot of numerical examples, it may serve as a textbook for graduate students. In the field of laser diode modulation and noise a vast amount has been published during recent years. Even though the book contains more than 600 references, only a small part of the existing literature is included.
Since its invention in 1962, the semiconductor laser has come a long way. Advances in material purity and epitaxial growth techniques have led to a variety of semiconductor lasers covering a wide wavelength range of 0. 3- 100 ~m. The development during the 1970s of GaAs semiconductor lasers, emitting in the near-infrared region of 0. 8-0. 9 ~m, resulted in their use for the first generation of optical fiber communication systems. However, to take advantage oflow losses in silica fibers occurring around 1. 3 and 1. 55 ~m, the emphasis soon shifted toward long-wavelength semiconductor lasers. The material system of choice in this wavelength range has been the quaternary alloy InGaAsP. During the last five years or so, the intense development effort devoted to InGaAsP lasers has resulted in a technology mature enough that lightwave transmission systems using InGaAsP lasers are currently being deployed throughout the world. This book is intended to provide a comprehensive account of long-wave length semiconductor lasers. Particular attention is paid to InGaAsP lasers, although we also consider semiconductor lasers operating at longer wave lengths. The objective is to provide an up-to-date understanding of semicon ductor lasers while incorporating recent research results that are not yet available in the book form. Although InGaAsP lasers are often used as an example, the basic concepts discussed in this text apply to all semiconductor lasers, irrespective of their wavelengths.
This book gives a contemporary overview of the technologies of single-frequency fiber lasers. The development of single-frequency fiber lasers is one of the most significant achievements in the field of laser photonics over the past two decades. Owing to the crucial demands of a laser sources with highly stable single-frequency operation, narrow linewidth, low noise, scalable to high output power, compact and robustness structure, fiber lasers have been intensively studied since its introduction to the single-frequency laser community and they still continuously proceed to trigger the emergence of new technologies and applications. This book systematically demonstrates the single-frequency fiber laser technologies from fundamental principles to state-of-the-art progress. Details of selected typical applications of single-frequency fiber lasers are also given and discussed. The reader will acquire a good knowledge of the current situation within this important field.
Concentrating on presenting a thorough analysis of DFB lasers from a level suitable for research students, this book emphasises and gives extensive coverage of computer aided modeling techniques.
Fiber Optic Measurement Techniques is an indispensable collection of key optical measurement techniques essential for developing and characterizing today's photonic devices and fiber optic systems. The book gives comprehensive and systematic descriptions of various fiber optic measurement methods with the emphasis on the understanding of optoelectronic signal processing methodologies, helping the reader to weigh up the pros and cons of each technique and establish their suitability for the task at hand. Carefully balancing descriptions of principle, operations and optoelectronic circuit implementation, this indispensable resource will enable the engineer to: - Understand the implications of various measurement results and system performance qualifications - Characterize modern optical systems and devices - Select optical devices and subsystems in optical network design and implementation - Design innovative instrumentations for fiber optic systems The 2nd edition of this successful reference has been extensively updated (with 150 new pages) to reflect the advances in the field since publication in 2008 and includes: - A new chapter on fiber-based optical sensors and spectroscopy techniques - A new chapter on measurement uncertainty and error analysis Fiber Optic Measurement Techniques brings together in one volume the fundamental principles with the latest techniques, making it a complete resource for the optical and communications engineer developing future optical devices and fiber optic systems. - The only book to combine explanations of the basic principles with latest techniques to enable the engineer to develop photonic systems of the future - Careful and systematic presentation of measurement methods to help engineers to choose the most appropriate for their application - The latest methods covered, such as real-time optical monitoring and phase coded systems and subsystems, making this the most up-to-date guide to fiber optic measurement
This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.
Broadband Cable Access Networks focuses on broadband distribution and systems architecture and concentrates on practical concepts that will allow the reader to do their own design, improvement, and troubleshooting work. The objective is to enhance the skill sets of a large population that designs and builds broadband cable plants, as well as those maintaining and troubleshooting it. A large cross-section of technical personnel who need to learn these skills design, maintain, and service HFC systems from signal creation through transmission to reception and processing at the customer end point. In addition, data/voice and video specialists need to master and reference the basics of HFC design and distribution before contending with the intricacies of their own unique services. This book serves as an essential reference to all cable engineers—those who specifically design and maintain the HFC distribution plant as well as those primarily concerned with data/voice technology as well as video technology. - Concentrates on practical concepts that will allow the user to do his own design, improvement, and trouble-shooting work. - Prepares cable engineers and technicians to work with assurance as they face the latest developments and future directions. - Concise and tightly focused, allowing readers to easily find answers to questions about an idea or concept they are developing in this area.
Supplies readers with the basic knowledge and guidance for the application of new lasers and light-emitting devices. The first part of the book discusses the generation of sub-shot-noise light in macroscopic pn junction light emitting devices, the second part is on the application of squeezed light in high-precision measurement, the third part concerns the Coulomb blockade effect in a mesoscopic pn junction and generation of single photon states, and the last part is on the detection of single photons using a visible light photon counter.
Ranging from fundamental theoretical concepts to advanced device technologies, this reference/text explores the engineering, characteristics, and performance of specific semiconductor lasers. It defines key principles in electromagnetics, optoelectronics, and laser implementation for novel applications in optical communications, storage, processing, measurement, and sensing. This text prepares students for advanced experimental and theoretical research in semiconductor laser technology and provides the only comprehensive, systematic, and concise description of semiconductor lasers available for an understanding of the physics and parameters of laser operation and function.
This book covers the device physics of semiconductor lasers in five chapters written by recognized experts in this field. The volume begins by introducing the basic mechanisms of optical gain in semiconductors and the role of quantum confinement in modern quantum well diode lasers. Subsequent chapters treat the effects of built-in strain, one of the important recent advances in the technology of these lasers, and the physical mechanisms underlying the dynamics and high speed modulation of these devices. The book concludes with chapters addressing the control of photon states in squeezed-light and microcavity structures, and electron states in low dimensional quantum wire and quantum dot lasers. The book offers useful information for both readers unfamiliar with semiconductor lasers, through the introductory parts of each chapter, as well as a state-of-the-art discussion of some of the most advanced semiconductor laser structures, intended for readers engaged in research in this field. This book may also serve as an introduction for the companion volume, Semiconductor Lasers II: Materials and Structures, which presents further details on the different material systems and laser structures used for achieving specific diode laser performance features. - Introduces the reader to the basics of semiconductor lasers - Covers the fundamentals of lasing in semiconductors, including quantum confined and microcavity structures - Beneficial to readers interested in the more general aspects of semiconductor physics and optoelectronic devices, such as quantum confined heterostructures and integrated optics - Each chapter contains a thorough introduction to the topic geared toward the non-expert, followed by an in-depth discussion of current technology and future trends - Useful for professionals engaged in research and development - Contains numerous schematic and data-containing illustrations