Download Free Low Energy Neutral Atom Imaging Book in PDF and EPUB Free Download. You can read online Low Energy Neutral Atom Imaging and write the review.

Recent developments in detection of neutral atom imaging should enable imaging the global structure and dynamics of the terrestrial magnetosphere. The inherent technical challenge of imaging low energy neutral atoms (LENAs) with energy
This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain. Quinn, J. M. Unspecified Center NAS8-39950...
Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 Å to 1500 Å. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 Å period (1000 Å bars with 1000 Å slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.
Magnetospheric imaging has been proposed using remote detection of low energy neutral atoms (LENAs) of magnetospheric origin. In the detector, LENAs can be removed from the immense ambient EUV by charge modification (ionization) using a carbon stripping foil and can be subsequently deflected into an E/q analysis section. The detector sensitivity efficiency of LENAs is highly dependent on the ionization probability of neutrals as they transit the carbon foil. In this study, we present equilibrium charge state distributions and scatter distributions for 1-30 keV atomic hydrogen and oxygen transiting 0.5 [mu]g cm−2 carbon foils. The fraction of hydrogen exiting a foil as H ranges from approximately 5% at 1 keV to 41% at 30 keV. The fraction of oxygen exiting the foil as O+ ranges from 2% at 10 keV to 8% at 30 keV. Results obtained after coating the exit surface of foils with either aluminum (which forms aluminum oxide when exposed to air) or gold suggests that the exit surface chemistry has no effect on the charge state distributions due to foil contamination from exposure to air. Scattering resulting from the atom-foil interaction is shown to be independent of the charge state distribution, suggesting that the interaction mechanisms resulting in charge exchange and scattering are distinctly different.
Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-ev hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper we examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, we examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then we review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of [Angstrom]) foils and then electrostatically analyzing these newly created ions to reject the large (>10[sup 10] cm[sup [minus]2] [sup [minus]1]) UV background to which the low energy detectors are sensitive. We conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment.
IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) is the first NASA MIDEX mission and the first mission dedicated to imaging the Earth's magnetosphere. This volume offers detailed descriptions of the IMAGE instrumentation and of the image inversion techniques used to interpret the data. Also included are chapters on the IMAGE science objectives, the spacecraft design and capabilities, science and mission operations, and the processing and distribution of IMAGE's nonproprietary data products.
This book describes the design, construction, and characterization of a new type of aberration-corrected, neutral-atom lens. Atom beam control plays a crucial role in many different fields, ranging from fundamental physics research and materials science to applied nanotechnology. Despite this, atom-optical elements like lenses and mirrors remain relatively underdeveloped compared to their counterparts in other optics fields. Although aberration correction is addressed quite comprehensively in photon and electron lenses, no credible research efforts have yet produced the same technology for neutral atoms. It reports on progress towards a neutral atom imaging device that will be useful in a range of applications, including nanofabrication and surface microscopy. It presents a novel technique for improving refractive power and correcting chromatic aberration in atom lenses based on a fundamental paradigm shift from continuous, two-dimensional focusing to a pulsed, three-dimensional approach. Simulations of this system suggest that it will pave the way towards the long-sought goal of true atom imaging on the nanoscale. The book further describes the construction of a prototype lens, and shows that all of the technological requirements for the proposed system are easily satisfied. Using metastable neon from a supersonic source, the prototype was characterized for three different focal lengths and a diverse range of apertures. Despite some manufacturing imperfections, lower distortion and higher resolution than has been shown in any previous hexapole lens was observed. Comparison with simulations corroborates the underlying theory and encourages further refinement of the process.
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
Astronomy has been associated with the detection of electromagnetic waves or photons from within and beyond the solar system, ranging from Radio to Gamma-ray Astronomy. Particle Astrophysics, including Neutrino and Dark-Matter Astrophysics today, started with the discovery of cosmic rays in 1911. The Space Age expanded particle observations to in-situ studies of lower energy electrons and ions with a variety of charge states in space plasmas traversed by spacecraft. Remote observation of space plasmas became possible only after the discovery of energetic neutral atoms (ENAs) in space in 1950.This book is a primer for those who wish to learn more about the origins of ENAs, related detection techniques, and how ENA images and spectra can be used to study space plasmas beyond the reach of spacecraft. It tells a comprehensive story from the first encounters with ENAs in the Earth's magnetosphere to Neutral-Atom Astronomy of the edge of the heliosphere and the interstellar medium. This story includes how ion mass spectrographs evolved into ENA imagers, overcoming the technical challenges, how to extract information from ENA data, and a variety of diagnostic applications on the magnetosphere, interplanetary space, other solar-system objects, the heliospheric boundary, the local interstellar medium, and a glimpse into the future of Neutral-Atom Astronomy.The authors hope to inform and inspire readers to further enrich this field of study.