Download Free Low Energy Flight Book in PDF and EPUB Free Download. You can read online Low Energy Flight and write the review.

The book focuses on the orbital dynamics and mission trajectory (transfer or target trajectory) design of low-energy flight in the context of modern astrodynamics. It investigates various topics that either offer new methods for solving classical problems or address emerging problems that have yet to be studied, including low-thrust transfer trajectory design using the virtual gravity field method; transfer in the three-body system using invariant manifolds; formation flying under space-borne artificial magnetic fields; and the orbital dynamics of highly irregular asteroids. It also features an extensive study of the orbital dynamics in the vicinity of contact binary asteroids, including the 1:1 ground-track resonance, the equilibrium points and their stability, and the third-order analytical solution of orbital motion in the vicinity of the non-collinear equilibrium point. Given its breadth of coverage, the book offers a valuable reference guide for all engineers and researchers interested in the potential applications of low-energy space missions.
Based on years of research conducted at the NASA Jet Propulsion Laboratory, Low-Energy Lunar Trajectory Design provides high-level information to mission managers and detailed information to mission designers about low-energy transfers between Earth and the moon. The book answers high-level questions about the availability and performance of such transfers in any given month and year. Low-energy lunar transfers are compared with various other types of transfers, and placed within the context of historical missions. Using this book, designers may reconstruct any transfer described therein, as well as design similar transfers with particular design parameters. An Appendix, “Locating the Lagrange Points,” and a useful list of terms and constants completes this technical reference. Surveys thousands of possible trajectories that may be used to transfer spacecraft between Earth and the moon, including transfers to lunar libration orbits, low lunar orbits, and the lunar surface Provides information about the methods, models, and tools used to design low-energy lunar transfers Includes discussion about the variations of these transfers from one month to the next, and the important operational aspects of implementing a low-energy lunar transfer Additional discussions address navigation, station-keeping, and spacecraft systems issues
Nearly everyone experiences fatigue, but some professions--such as aviation, medicine and the military--demand alert, precise, rapid, and well-informed decision making and communication with little margin for error. The potential for fatigue to negatively affect human performance is well established. Concern about this potential in the aviation context extends back decades, with both airlines and pilots agreeing that fatigue is a safety concern. A more recent consideration is whether and how pilot commuting, conducted in a pilot's off-duty time, may affect fatigue during flight duty. In summer 2010 the U.S. Congress directed the Federal Aviation Administration (FAA) to update the federal regulations that govern pilot flight and duty time, taking into account recent research related to sleep and fatigue. As part of their directive, Congress also instructed FAA to have the National Academy of Sciences conduct a study on the effects of commuting on pilot fatigue. The Effects of Commuting on Pilot Fatigue reviews research and other information related to the prevalence and characteristics of commuting; to the science of sleep, fatigue, and circadian rhythms; to airline and regulatory oversight policies; and to pilot and airline practices. The Effects of Commuting on Pilot Fatigue discusses the policy, economic, and regulatory issues that affect pilot commuting, and outlines potential next steps, including recommendations for regulatory or administrative actions, or further research by the FAA.
An investigation into how machines and living creatures fly, and of the similarities between butterflies and Boeings, paper airplanes and plovers. From the smallest gnat to the largest aircraft, all things that fly obey the same aerodynamic principles. In The Simple Science of Flight, Henk Tennekes investigates just how machines and creatures fly: what size wings they need, how much energy is required for their journeys, how they cross deserts and oceans, how they take off, climb, and soar. Fascinated by the similarities between nature and technology, Tennekes offers an introduction to flight that teaches by association. Swans and Boeings differ in numerous ways, but they follow the same aerodynamic principles. Biological evolution and its technical counterpart exhibit exciting parallels. What makes some airplanes successful and others misfits? Why does the Boeing 747 endure but the Concorde now seem a fluke? Tennekes explains the science of flight through comparisons, examples, equations, and anecdotes. The new edition of this popular book has been thoroughly revised and much expanded. Highlights of the new material include a description of the incredible performance of bar-tailed godwits (7,000 miles nonstop from Alaska to New Zealand), an analysis of the convergence of modern jetliners (from both Boeing and Airbus), a discussion of the metabolization of energy featuring Lance Armstrong, a novel treatment of the aerodynamics of drag and trailing vortices, and an emphasis throughout on evolution, in nature and in engineering. Tennekes draws on new evidence on bird migration, new wind-tunnel studies, and data on new airliners. And his analysis of the relative efficiency of planes, trains, and automobiles is newly relevant. (On a cost-per-seat scale, a 747 is more efficient than a passenger car.)
This book covers aerospace flight control systems. Both primary and secondary flight control systems are covered in the book. The first chapters cover basic mechanism fundamentals that are relevant to flight control systems. Next is chapters on cable systems, gearing systems and power screws. Hydraulic and electromechanical actuation are also discussed. From here, the book addresses general aspects of flight control systems, including fly by wire systems. After this secondary systems (high lift, spoilers, trim) and primary flight control for each axis are discussed - each in stand-alone chapters. Reversible, irreversible and fly by wire systems are discussed for each axis. The final chapter goes into system fault detection.
Energy Efficiency in Air Transportation explores the relationship between air transportation and energy use, starting with an analysis of air transport energy sources and their potential development. The book examines how different elements of the air transport system make use of energy, with an analysis of various methods for optimizing energy consumption. The book covers the consequences of energy use in terms of economics, environmental impact and sustainable development, with a review of the existing and proposed regulatory measures addressing those factors. Aeronautical and air transport engineers interested in aerial vehicle systems design, as well as public administrators and regulators concerned with energy efficiency or environmental issues in air transport, will benefit greatly from this comprehensive reference, which captures necessary background information along with the newest developments in the field. Examines new developments in energy efficiency in the air transport field Includes exergy analyses of aerial vehicles and systems Shows the environmental impact from fuel use including local air quality, consumption of non-renewable materials and contribution to climate change Discusses the CO2 emissions certification required by ICAO for new aircraft models