Download Free Low Energy Excitations In Disordered Solids A Story Of The Universal Phenomena Of Structural Tunneling Book in PDF and EPUB Free Download. You can read online Low Energy Excitations In Disordered Solids A Story Of The Universal Phenomena Of Structural Tunneling and write the review.

The subject of low-energy excitations has evolved since two-level-tunneling systems were first proposed ~50 years ago. Initially they were used to explain the common anomalous properties of oxide glasses and polymers; now the subject includes a wide range of other materials containing disorder: amorphous semiconductors and metals, doped- mixed- and quasi-crystals, surface adsorbates, ... and topics such as dephasing of quantum states and interferometer noise. A fairly simple empirical description using a remarkably small range of parameters serves well to describe the effect of these excitations, but the structures causing these effects are known in only a few materials and the reasons for their similarity across disparate materials has only been qualitatively addressed.This book provides a unified, comprehensive description of tunneling systems in disordered solids suitable for graduate students/researchers wishing an introduction to the field. Its focus is on the tunneling systems intrinsic to glassy solids. It describes the experimental observations of 'glassy' properties, develops the basic empirical tunneling model, and discusses the dynamics changes on cooling to temperatures where direct excitation interactions become important and on heating to where tunneling gives way to thermal activation. Finally, it discusses how theories of glass formation can help us understand the ubiquity of these excitations.The Development of the basic tunneling model is the core of the book and is worked out in considerable detail. To keep the total within bounds of our expertise and the readers' patience, many related experimental and theoretical developments are only sketched out here; the text is heavily cited to allow readers to follow their specific interests in much more depth.
Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.
Physics at Surfaces is a unique graduate-level introduction to the physics and chemical physics of solid surfaces, and atoms and molecules that interact with solid surfaces. A subject of keen scientific inquiry since the last century, surface physics emerged as an independent discipline only in the late 1960s as a result of the development of ultra-high vacuum technology and high speed digital computers. With these tools, reliable experimental measurements and theoretical calculations could at last be compared. Progress in the last decade has been truly striking. This volume provides a synthesis of the entire field of surface physics from the perspective of a modern condensed matter physicist with a healthy interest in chemical physics. The exposition intertwines experiment and theory whenever possible, although there is little detailed discussion of technique. This much-needed text will be invaluable to graduate students and researchers in condensed matter physics, physical chemistry and materials science working in, or taking graduate courses in, surface science.
The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
The Institute for Amorphous Studies was founded in 1982 as the international center for the investigation of amorphous mate rials. It has since played an important role in promoting the und er standing of disordered matter in general. An Institute lecture series on "Fundamentals of Amorphous Materials and Devices" was held during 1982-83 with distinguished speakers from universities and industry. These events were free and open to the public ,and were attended by many representatives of the scientific community. The lectures themselves were highly successful inasmuch as they provided not only formal instruction but also an opportunity for vigorous and stimulating debate. That last element could not be captured within the pages of a book I but the lectures concentrated on the latest advances in the field I which is why their essential contents are he re reproduced in collective form. Together they constitute an interdisciplinary status report of the field. The speakers brought many different viewpoints and a variety of back ground experiences io bear on the problems involved I but though language and conventions vary I the essential unity of the concerns is very clear I as indeed are the ultimate benefits of the many-sided approach.
This self-contained textbook aims to introduce the physics of structurally disordered condensed systems at the level of advanced undergraduate and graduate students. The topics discussed include the geometry and symmetries of the building blocks commonly used to obtain atomic structures, the various kinds of disorder, the phenomenology and the main theories of the glass transition, investigation of the structure of amorphous systems, the dependence of system structure on its dimensions (clusters), and the case of positional order in the absence of translational order (quasicrystals).
Magnetism and Structure in Functional Materials addresses three distinct but related topics: (i) magnetoelastic materials such as magnetic martensites and magnetic shape memory alloys, (ii) the magnetocaloric effect related to magnetostructural transitions, and (iii) colossal magnetoresistance (CMR) and related manganites. The goal is to identify common underlying principles in these classes of materials that are relevant for optimizing various functionalities. The emergence of apparently different magnetic/structural phenomena in disparate classes of materials clearly points to a need for common concepts in order to achieve a broader understanding of the interplay between magnetism and structure in this general class of new functional materials exhibiting ever more complex microstructure and function. The topic is interdisciplinary in nature and the contributors correspondingly include physicists, materials scientists and engineers. Likewise the book will appeal to scientists from all these areas.
Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.