Download Free Low Dielectric Constant Materials For Ic Applications Book in PDF and EPUB Free Download. You can read online Low Dielectric Constant Materials For Ic Applications and write the review.

Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for
Recent developments in microelectronics technologies have created a great demand for interlayer dielectric materials with a very low dielectric constant. They will play a crucial role in the future generation of IC devices (VLSI/UISI and high speed IC packaging). Considerable efforts have been made to develop new low as well as high dielectric constant materials for applications in electronics industries. Besides achieving either low or high dielectric constants, other materials' properties such as good processability, high mechanical strength, high thermal and environmental stability, low thermal expansion, low current leakage, low moisture absorption, corrosion resistant, etc., are of equal importance. Many chemical and physical strategies have been employed to get desired dielectric materials with high performance. This is a rapidly growing field of science--both in novel materials and their applications to future packing technologies. The experimental data on inorganic and organic materials having low or high dielectric constant remail scattered in the literature. It is timely, therfore, to consolidate the current knowledge on low and high dielectric constant materials into a sigle reference source. Handbook of Low and High Dielectric Constant Materials and Their Applications is aimed at bringing together under a sigle cover (in two volumes) all low and high dielectric constant materials currently studied in academic and industrial research covering all spects of inorgani an organic materials from their synthetic chemistry, processing techniques, physics, structure-property relationship to applications in IC devices. This book will summarize the current status of the field covering important scientific developments made over the past decade with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source for all those interested in low and high dielectric constant material.
Issues relating to the high-K gate dielectric are among the greatest challenges for the evolving International Technology Roadmap for Semiconductors (ITRS). More than just an historical overview, this book will assess previous and present approaches related to scaling the gate dielectric and their impact, along with the creative directions and forthcoming challenges that will define the future of gate dielectric scaling technology. Topics include: an extensive review of Moore's Law, the classical regime for SiO2 gate dielectrics; the transition to silicon oxynitride gate dielectrics; the transition to high-K gate dielectrics (including the drive towards equivalent oxide thickness in the single-digit nanometer regime); and future directions and issues for ultimate technology generation scaling. The vision, wisdom, and experience of the team of authors will make this book a timely, relevant, and interesting, resource focusing on fundamentals of the 45 nm Technology Generation and beyond.
Contains papers from a May 2000 symposium, representing the state of the art in areas of dielectric materials science and process integration. Papers are arranged in sections on low and high dielectric constant materials, covering topics such as ammonia plasma passivation effects on properties of post-CMP low-k HSQ, characterization of ashing effects on low-k dielectric films, and electron beam curing of thin film polymer dielectrics. Other subjects include characterization of high-k dielectrics using the non-contact surface charge profiler method, and processing effects and electrical evaluation of ZrO2 formed by RTP oxidation of Zr. Loboda is affiliated with Dow Corning Corporation. c. Book News Inc.
As semiconductor manufacturers implement copper conductors in advanced interconnect schemes, research and development efforts shift toward the selection of an insulator that can take maximum advantage of the lower power and faster signal propagation allowed by copper interconnects. One of the main challenges to integrating a low-dielectric constant (low-kappa) insulator as a replacement for silicon dioxide is the behavior of such materials during the chemical-mechanical planarization (CMP) process used in Damascene patterning. Low-kappa dielectrics tend to be softer and less chemically reactive than silicon dioxide, providing significant challenges to successful removal and planarization of such materials. The focus of this book is to merge the complex CMP models and mechanisms that have evolved in the past decade with recent experimental results with copper and low-kappa CMP to develop a comprehensive mechanism for low- and high-removal-rate processes. The result is a more in-depth look into the fundamental reaction kinetics that alter, selectively consume, and ultimately planarize a multi-material structure during Damascene patterning.
This book covers the combined subjects of organic electronic and optoelectronic materials/devices. It is designed for classroom instruction at the senior college level. Highlighting emerging organic and polymeric optoelectronic materials and devices, it presents the fundamentals, principle mechanisms, representative examples, and key data.