Download Free Lothar Meyer Book in PDF and EPUB Free Download. You can read online Lothar Meyer and write the review.

This book provides an English translation of the early fundamental contributions of Lothar Meyer (1830-1895) regarding his independent discovery, coincident with that of Dmitrii Mendeleev, of the periodic system of the elements. Although an English translation of the 5th edition of Meyer ́s book Modern Theories of Chemistry and their Significance for Chemical Statics was published in 1888, this will be the first time that these crucial early texts will be available in English. These writings reveal details regarding Meyer ́s research pathway to the idea of periodicity and to an arrangement of the chemical elements in tables and graphs. An introductory commentary and interpolated editorial footnotes to the texts clarify the (physico)-chemical background regarding the various shifts in thought during the crucial period from 1860 to the early 1870s. A short biography of Lothar Meyer completes the book. The volume includes a complete translation of the first edition of Modern Theories of Chemistry and their Significance for Chemical Statics (1864), the ground-breaking paper “The Nature of the Chemical Elements as a Function of their Atomic Weights” in Annalen der Chemie und Pharmacie, suppl. vol. 7 (1870), 354-64, and portions of the revised second edition of Modern Theories of Chemistry and their Significance for Chemical Statics (1872).
This book provides an overview of the origins and evolution of the periodic system from its prehistory to the latest synthetic elements and possible future additions. The periodic system of the elements first emerged as a comprehensive classificatory and predictive tool for chemistry during the 1860s. Its subsequent embodiment in various versions has made it one of the most recognizable icons of science. Based primarily on a symposium titled “150 Years of the Periodic Table” and held at the August 2019 national meeting of the American Chemical Society, this book describes the origins of the periodic law, developments that led to its acceptance, chemical families that the system struggled to accommodate, extension of the periodic system to include synthetic elements, and various cultural aspects of the system that were celebrated during the International Year of the Periodic Table.
The Periodic Table: Its Story and Its Significance traces the evolution and development of the periodic table, from Mendeleev's 1869 first published table and onto the modern understanding provided by modern physics.
From New York Times bestselling author Sam Kean comes incredible stories of science, history, finance, mythology, the arts, medicine, and more, as told by the Periodic Table. Why did Gandhi hate iodine (I, 53)? How did radium (Ra, 88) nearly ruin Marie Curie's reputation? And why is gallium (Ga, 31) the go-to element for laboratory pranksters? The Periodic Table is a crowning scientific achievement, but it's also a treasure trove of adventure, betrayal, and obsession. These fascinating tales follow every element on the table as they play out their parts in human history, and in the lives of the (frequently) mad scientists who discovered them. The Disappearing Spoon masterfully fuses science with the classic lore of invention, investigation, and discovery -- from the Big Bang through the end of time. Though solid at room temperature, gallium is a moldable metal that melts at 84 degrees Fahrenheit. A classic science prank is to mold gallium spoons, serve them with tea, and watch guests recoil as their utensils disappear.
By the dawn of the nineteenth century, "elements" had been defined as basic building blocks of nature resistant to decomposition by chemical means. In 1869, the Russian chemist Dmitri Ivanovich Mendeleev organized the discord of the elements into the periodic table, assigning each element to a row, with each row corresponding to an elemental category. The underlying order of matter, hitherto only dimly perceived, was suddenly clearly revealed. This is the first English-language collection of Mendeleev's most important writings on the periodic law. Thirteen papers and essays, divided into three groups, reflect the period corresponding to the initial establishment of the periodic law (three papers: 1869-71), a period of priority disputes and experimental confirmations (five papers: 1871-86), and a final period of general acceptance for the law and increasing international recognition for Mendeleev (five papers: 1887-1905). A single, easily accessible source for Mendeleev's principle papers, this volume offers a history of the development of the periodic law, written by the law's own founder.
In 1913, English physicist Henry Moseley established an elegant method for "counting" the elements based on atomic number, ranging them from hydrogen (#1) to uranium (#92). It soon became clear, however, that seven elements were mysteriously missing from the lineup--seven elements unknown to science. In his well researched and engaging narrative, Eric Scerri presents the intriguing stories of these seven elements--protactinium, hafnium, rhenium, technetium, francium, astatine and promethium. The book follows the historical order of discovery, roughly spanning the two world wars, beginning with the isolation of protactinium in 1917 and ending with that of promethium in 1945. For each element, Scerri traces the research that preceded the discovery, the pivotal experiments, the personalities of the chemists involved, the chemical nature of the new element, and its applications in science and technology. We learn for instance that alloys of hafnium--whose name derives from the Latin name for Copenhagen (hafnia)--have some of the highest boiling points on record and are used for the nozzles in rocket thrusters such as the Apollo Lunar Modules. Scerri also tells the personal tales of researchers overcoming great obstacles. We see how Lise Meitner and Otto Hahn--the pair who later proposed the theory of atomic fission--were struggling to isolate element 91 when World War I intervened, Hahn was drafted into the German army's poison gas unit, and Meitner was forced to press on alone against daunting odds. The book concludes by examining how and where the twenty-five new elements have taken their places in the periodic table in the last half century. A Tale of Seven Elements paints a fascinating picture of chemical research--the wrong turns, missed opportunities, bitterly disputed claims, serendipitous findings, accusations of dishonesty--all leading finally to the thrill of discovery.
Eric R. Scerri presents a modern and fresh exploration of this fundamental topic in the physical sciences, considering the deeper implications of the arrangements of the table to atomic physics and quantum mechanics. This new edition celebrates the completion of the 7th period of the table, with the naming of elements 113, 115, 117, and 118