Download Free Long Term Health Monitoring Of Populations Following A Nuclear Or Radiological Incident In The United States Book in PDF and EPUB Free Download. You can read online Long Term Health Monitoring Of Populations Following A Nuclear Or Radiological Incident In The United States and write the review.

Accidents and terrorist attacks that lead to the release of radioactive materials can cause deaths, injuries, and a range of psychosocial effects in the surrounding community and team of emergency responders. In the United States, federal, state, and local agencies respond with the necessary resources to address the consequences of nuclear and radiological incidents and monitor the affected population. Following the 2011 Fukushima Daiichi Nuclear Power Plant accident and the 2017 Gotham Shield National Level Exercise, the CDC recognized an opportunity to improve their practices by establishing a more efficient and timely health effect surveillance system before another incident occurs. On March 12-13th, 2019, the National Academies convened a workshop to discuss the process for preparing a radiation registry for monitoring long-term health effects of populations affected by a nuclear or radiological incident. Participants assessed existing information, useful practices, and tools for planning a radiation registry that will enhance incident monitoring and response methods. This publication summarizes the discussions and presentations from the workshop.
Accidents and terrorist attacks that lead to the release of radioactive materials can cause deaths, injuries, and a range of psychosocial effects in the surrounding community and team of emergency responders. In the United States, federal, state, and local agencies respond with the necessary resources to address the consequences of nuclear and radiological incidents and monitor the affected population. Following the 2011 Fukushima Daiichi Nuclear Power Plant accident and the 2017 Gotham Shield National Level Exercise, the CDC recognized an opportunity to improve their practices by establishing a more efficient and timely health effect surveillance system before another incident occurs. On March 12-13th, 2019, the National Academies convened a workshop to discuss the process for preparing a radiation registry for monitoring long-term health effects of populations affected by a nuclear or radiological incident. Participants assessed existing information, useful practices, and tools for planning a radiation registry that will enhance incident monitoring and response methods. This publication summarizes the discussions and presentations from the workshop.
"TRB's Hazardous Materials Cooperative Research Program (HMCRP) Report 9: A Compendium of Best Practices and Lessons Learned for Improving Local Community Recovery from Disastrous Hazardous Materials Transportation Incidents explores how local communities can develop or improve recovery planning and operations in response to hazardous materials transportation incidents"--Publisher's description.
Exposures at low doses of radiation, generally taken to mean doses below 100 millisieverts, are of primary interest for setting standards for protecting individuals against the adverse effects of ionizing radiation. However, there are considerable uncertainties associated with current best estimates of risks and gaps in knowledge on critical scientific issues that relate to low dose radiation. The Nuclear and Radiation Studies Board of the National Academies hosted the symposium on The Future of Low Dose Radiation Research in the United States on May 8 and 9, 2019. The goal of the symposium was to provide an open forum for a national discussion on the need for a long-term strategy to guide a low dose radiation research program in the United States. The symposium featured presentations on low dose radiation programs around the world, panel discussions with representatives from governmental and nongovernmental organizations about the need for a low dose radiation research program, reviews of low dose radiation research in epidemiology and radiation biology including new directions, and lessons to be learned from setting up large research programs in non-radiation research fields. This publication summarizes the presentation and discussion of the symposium.
The March 11, 2011, Great East Japan Earthquake and tsunami sparked a humanitarian disaster in northeastern Japan. They were responsible for more than 15,900 deaths and 2,600 missing persons as well as physical infrastructure damages exceeding $200 billion. The earthquake and tsunami also initiated a severe nuclear accident at the Fukushima Daiichi Nuclear Power Station. Three of the six reactors at the plant sustained severe core damage and released hydrogen and radioactive materials. Explosion of the released hydrogen damaged three reactor buildings and impeded onsite emergency response efforts. The accident prompted widespread evacuations of local populations, large economic losses, and the eventual shutdown of all nuclear power plants in Japan. "Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants" is a study of the Fukushima Daiichi accident. This report examines the causes of the crisis, the performance of safety systems at the plant, and the responses of its operators following the earthquake and tsunami. The report then considers the lessons that can be learned and their implications for U.S. safety and storage of spent nuclear fuel and high-level waste, commercial nuclear reactor safety and security regulations, and design improvements. "Lessons Learned" makes recommendations to improve plant systems, resources, and operator training to enable effective ad hoc responses to severe accidents. This report's recommendations to incorporate modern risk concepts into safety regulations and improve the nuclear safety culture will help the industry prepare for events that could challenge the design of plant structures and lead to a loss of critical safety functions. In providing a broad-scope, high-level examination of the accident, "Lessons Learned" is meant to complement earlier evaluations by industry and regulators. This in-depth review will be an essential resource for the nuclear power industry, policy makers, and anyone interested in the state of U.S. preparedness and response in the face of crisis situations.
The National Academies of Sciences, Engineering, and Medicine held a workshop on August 22â€"23, 2018, in Washington, DC, to explore medical and public health preparedness for a nuclear incident. The event brought together experts from government, nongovernmental organizations, academia, and the private sector to explore current assumptions behind the status of medical and public health preparedness for a nuclear incident, examine potential changes in these assumptions in light of increasing concerns about the use of nuclear warfare, and discuss challenges and opportunities for capacity building in the current threat environment. This publication summarizes the presentations and discussions from the workshop.
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
This publication provides a practical resource for emergency planning, and fulfils, in part, functions assigned to the IAEA in the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. If used effectively, it will help users to develop a capability to adequately respond to a nuclear or radiological emergency.
The explosion on 26 April 1986 at the Chernobyl nuclear power plant and the consequent reactor fire resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. Although the accident occurred nearly two decades ago, controversy still surrounds the real impact of the disaster. Therefore the IAEA, in cooperation with other UN bodies, the World Bank, as well as the competent authorities of Belarus, the Russian Federation and Ukraine, established the Chernobyl Forum in 2003. The mission of the Forum was to generate 'authoritative consensual statements' on the environmental consequences and health effects attributable to radiation exposure arising from the accident as well as to provide advice on environmental remediation and special health care programmes, and to suggest areas in which further research is required. This report presents the findings and recommendations of the Chernobyl Forum concerning the environmental effects of the Chernobyl accident.
The Science of Responding to a Nuclear Reactor Accident summarizes the presentations and discussions of the May 2014 Gilbert W. Beebe Symposium titled "The Science and Response to a Nuclear Reactor Accident". The symposium, dedicated in honor of the distinguished National Cancer Institute radiation epidemiologist who died in 2003, was co-hosted by the Nuclear and Radiation Studies Board of the National Academy of Sciences and the National Cancer Institute. The symposium topic was prompted by the March 2011 accident at the Fukushima Daiichi nuclear power plant that was initiated by the 9.0-magnitude earthquake and tsunami off the northeast coast of Japan. This was the fourth major nuclear accident that has occurred since the beginning of the nuclear age some 60 years ago. The 1957 Windscale accident in the United Kingdom caused by a fire in the reactor, the 1979 Three Mile Island accident in the United States caused by mechanical and human errors, and the 1986 Chernobyl accident in the former Soviet Union caused by a series of human errors during the conduct of a reactor experiment are the other three major accidents. The rarity of nuclear accidents and the limited amount of existing experiences that have been assembled over the decades heightens the importance of learning from the past. This year's symposium promoted discussions among federal, state, academic, research institute, and news media representatives on current scientific knowledge and response plans for nuclear reactor accidents. The Beebe symposium explored how experiences from past nuclear plant accidents can be used to mitigate the consequences of future accidents, if they occur. The Science of Responding to a Nuclear Reactor Accident addresses off-site emergency response and long-term management of the accident consequences; estimating radiation exposures of affected populations; health effects and population monitoring; other radiological consequences; and communication among plant officials, government officials, and the public and the role of the media.