Download Free Long Run Behavior Of Interval Neutrosophic Markov Chain Book in PDF and EPUB Free Download. You can read online Long Run Behavior Of Interval Neutrosophic Markov Chain and write the review.

As the world is a competitive one, prediction of the future trend is an important task for the survival of any organization. There are many statistical and technical methods available for doing this task and this can be done in an optimized way using Markov chain with time series where random changes are allowed. Markov chains are an essential technique in random process underlying the Markov property [1]. Longrun behavior is the behavior of the system where each and every input can be different and the free entry is unconditional. In addition, the cost of this behavior is the minimum of short run behavior.
Optimization Theory Based on Neutrosophic and Plithogenic Sets presents the state-of-the-art research on neutrosophic and plithogenic theories and their applications in various optimization fields. Its table of contents covers new concepts, methods, algorithms, modelling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, nonlinear problems and new information related to optimization for the topic from the theoretical and applied viewpoints in neutrosophic sets and logic. - All essential topics about neutrosophic optimization and Plithogenic sets make this volume the only single source of comprehensive information - New and innovative theories help researchers solve problems under diverse optimization environments - Varied applications address practitioner fields such as computational intelligence, image processing, medical diagnosis, fault diagnosis, and optimization design
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
In this paper one generalizes the intuitionistic fuzzy set (IFS), paraconsistent set, and intuitionistic set to the neutrosophic set (NS). Many examples are presented. Distinctions between NS and IFS are underlined.
For the involvement of uncertainty of varying degrees, when the total of the membership degree exceeds one or less than one, then the newer mathematical paradigm shift, Fuzzy Theory proves appropriate.For the past two or three decades, Fuzzy Theory has become the potent tool to study and analyze uncertainty involved in all problems. But, many real world problems also abound with the concept of indeterminacy.In this book, the new, powerful tool of neutrosophy that deals with indeterminacy is utilized. Innovative neutrosophic models are described.The theory of neutrosophic graphs is introduced and applied to fuzzy and neutrosophic models.Neutrosophic Logic and Neutrosophic Set (generalizations of Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set respectively) became strong tools for applications.
Studies to neutrosophic graphs happens to be not only innovative and interesting, but gives a new dimension to graph theory. The classic coloring of edge problem happens to give various results. Neutrosophic tree will certainly find lots of applications in data mining when certain levels of indeterminacy is involved in the problem. Several open problems are suggested.
Waiting in lines is a staple of everyday human life. Without really noticing, we are doing it when we go to buy a ticket at a movie theater, stop at a bank to make an account withdrawal, or proceed to checkout a purchase from one of our favorite department stores. Oftentimes, waiting lines are due to overcrowded, overfilling, or congestion; any time there is more customer demand for a service than can be provided, a waiting line forms. Queuing systems is a term used to describe the methods and techniques most ideal for measuring the probability and statistics of a wide variety of waiting line models. This book provides an introduction to basic queuing systems, such as M/M/1 and its variants, as well as newer concepts like systems with priorities, networks of queues, and general service policies. Numerical examples are presented to guide readers into thinking about practical real-world applications, and students and researchers will be able to apply the methods learned to designing queuing systems that extend beyond the classroom. Very little has been published in the area of queuing systems, and this volume will appeal to graduate-level students, researchers, and practitioners in the areas of management science, applied mathematics, engineering, computer science, and statistics.
This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2 nd edition published in 2006).