Download Free Long Range Dependent Processes Theory And Applications Book in PDF and EPUB Free Download. You can read online Long Range Dependent Processes Theory And Applications and write the review.

The area of data analysis has been greatly affected by our computer age. For example, the issue of collecting and storing huge data sets has become quite simplified and has greatly affected such areas as finance and telecommunications. Even non-specialists try to analyze data sets and ask basic questions about their structure. One such question is whether one observes some type of invariance with respect to scale, a question that is closely related to the existence of long-range dependence in the data. This important topic of long-range dependence is the focus of this unique work, written by a number of specialists on the subject. The topics selected should give a good overview from the probabilistic and statistical perspective. Included will be articles on fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, and prediction for long-range dependence sequences. For those graduate students and researchers who want to use the methodology and need to know the "tricks of the trade," there will be a special section called "Mathematical Techniques." Topics in the first part of the book are covered from probabilistic and statistical perspectives and include fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, prediction for long-range dependence sequences. The reader is referred to more detailed proofs if already found in the literature. The last part of the book is devoted to applications in the areas of simulation, estimation and wavelet techniques, traffic in computer networks, econometry and finance, multifractal models, and hydrology. Diagrams and illustrations enhance the presentation. Each article begins with introductory background material and is accessible to mathematicians, a variety of practitioners, and graduate students. The work serves as a state-of-the art reference or graduate seminar text.
Processes with long range correlations occur in a wide variety of fields ranging from physics and biology to economics and finance. This book, suitable for both graduate students and specialists, brings the reader up to date on this rapidly developing field. A distinguished group of experts have been brought together to provide a comprehensive and well-balanced account of basic notions and recent developments. The book is divided into two parts. The first part deals with theoretical developments in the area. The second part comprises chapters dealing primarily with three major areas of application: anomalous diffusion, economics and finance, and biology (especially neuroscience).
Reading without meditation is sterile; meditation without reading is liable to error; prayer without meditation is lukewarm; meditation without prayer is unfruitful; prayer, when it is fervent, wins contemplation, but to obtain contemplation without prayer would be rare, even miraculous. Bernhard de Clairvaux (12th century) NobodycandenythatIP-basedtra?chasinvadedourdailylifeinmanyways and no one can escape from its di?erent forms of appearance. However, most people are not aware of this fact. From the usage of mobile phones – either as simple telephone or for data transmissions – over the new form of telephone service Voice over IP (VoIP), up to the widely used Internet at the users own PC, in all instances the transmission of the information, encoded in a digital form, relies on the Internet Protocol (IP). So, we should take a brief glimpse at this protocol and its constant companions such as TCP and UDP, which have revolutionized the communication system over the past 20 years. The communication network has experienced a fundamental change, which was dominated up to end of the eighties of the last century by voice appli- tion.Butfromthemiddleoftheninetieswehaveobservedadecisivemigration in the data transmission. If the devoted reader of this monograph reads the title ‘IP tra?c theory and performance’, she/he may ask, why do we have to be concerned with mod- ing IP tra?c, and why do we have to consider and get to know new concepts.
This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been published in a single self-contained volume, and can be used for a one- or two-semester graduate topics course. It is complete with helpful exercises and an appendix which describes a number of notions and results belonging to the topics used frequently throughout the book, such as topological groups and an overview of the Karamata theorems on regularly varying functions.
Intended for a second course in stationary processes, Stationary Stochastic Processes: Theory and Applications presents the theory behind the field’s widely scattered applications in engineering and science. In addition, it reviews sample function properties and spectral representations for stationary processes and fields, including a portion on stationary point processes. Features Presents and illustrates the fundamental correlation and spectral methods for stochastic processes and random fields Explains how the basic theory is used in special applications like detection theory and signal processing, spatial statistics, and reliability Motivates mathematical theory from a statistical model-building viewpoint Introduces a selection of special topics, including extreme value theory, filter theory, long-range dependence, and point processes Provides more than 100 exercises with hints to solutions and selected full solutions This book covers key topics such as ergodicity, crossing problems, and extremes, and opens the doors to a selection of special topics, like extreme value theory, filter theory, long-range dependence, and point processes, and includes many exercises and examples to illustrate the theory. Precise in mathematical details without being pedantic, Stationary Stochastic Processes: Theory and Applications is for the student with some experience with stochastic processes and a desire for deeper understanding without getting bogged down in abstract mathematics.
This modern and comprehensive guide to long-range dependence and self-similarity starts with rigorous coverage of the basics, then moves on to cover more specialized, up-to-date topics central to current research. These topics concern, but are not limited to, physical models that give rise to long-range dependence and self-similarity; central and non-central limit theorems for long-range dependent series, and the limiting Hermite processes; fractional Brownian motion and its stochastic calculus; several celebrated decompositions of fractional Brownian motion; multidimensional models for long-range dependence and self-similarity; and maximum likelihood estimation methods for long-range dependent time series. Designed for graduate students and researchers, each chapter of the book is supplemented by numerous exercises, some designed to test the reader's understanding, while others invite the reader to consider some of the open research problems in the field today.
Assembles three different strands of long memory analysis: statistical literature on the properties of, and tests for, LRD processes; mathematical literature on the stochastic processes involved; and models from economic theory providing plausible micro foundations for the occurrence of long memory in economics.
This contributed volume features invited papers on current research and applications in mathematical structures. Featuring various disciplines in the mathematical sciences and physics, articles in this volume discuss fundamental scientific and mathematical concepts as well as their applications to topical problems. Special emphasis is placed on important methods, research directions and applications of analysis within and beyond each field. Covered topics include Metric operators and generalized hermiticity, Semi-frames, Hilbert-Schmidt operator, Symplectic affine action, Fractional Brownian motion, Walker Osserman metric, Nonlinear Maxwell equations, The Yukawa model, Heisenberg observables, Nonholonomic systems, neural networks, Seiberg-Witten invariants, photon-added coherent state, electrostatic double layers, and star products and functions. All contributions are from the participants of the conference held October 2016 in Cotonou, Benin in honor of Professor Mahouton Norbert Hounkonnou for his outstanding contributions to the mathematical and physical sciences and education. Accessible to graduate students and postdoctoral researchers, this volume is a useful resource to applied scientists, applied and pure mathematicians, and mathematical and theoretical physicists.
An integrated approach to fractals and point processes This publication provides a complete and integrated presentation of the fields of fractals and point processes, from definitions and measures to analysis and estimation. The authors skillfully demonstrate how fractal-based point processes, established as the intersection of these two fields, are tremendously useful for representing and describing a wide variety of diverse phenomena in the physical and biological sciences. Topics range from information-packet arrivals on a computer network to action-potential occurrences in a neural preparation. The authors begin with concrete and key examples of fractals and point processes, followed by an introduction to fractals and chaos. Point processes are defined, and a collection of characterizing measures are presented. With the concepts of fractals and point processes thoroughly explored, the authors move on to integrate the two fields of study. Mathematical formulations for several important fractal-based point-process families are provided, as well as an explanation of how various operations modify such processes. The authors also examine analysis and estimation techniques suitable for these processes. Finally, computer network traffic, an important application used to illustrate the various approaches and models set forth in earlier chapters, is discussed. Throughout the presentation, readers are exposed to a number of important applications that are examined with the aid of a set of point processes drawn from biological signals and computer network traffic. Problems are provided at the end of each chapter allowing readers to put their newfound knowledge into practice, and all solutions are provided in an appendix. An accompanying Web site features links to supplementary materials and tools to assist with data analysis and simulation. With its focus on applications and numerous solved problem sets, this is an excellent graduate-level text for courses in such diverse fields as statistics, physics, engineering, computer science, psychology, and neuroscience.