Download Free Long Noncoding Rna Book in PDF and EPUB Free Download. You can read online Long Noncoding Rna and write the review.

This contributed volume offers a comprehensive and detailed overview of the various aspects of long non-coding RNAs and discusses their emerging significance. Written by leading experts in the field, it motivates young researchers around the globe, and offers graduate and postgraduate students fascinating insights into genes and their regulation in eukaryotes and higher organisms.
The dark side of the genome represents vast domains of the genome that are not encoding for proteins – the basic bricks of cellular structure and metabolism. Up to 98% of the human genome is non-coding and produces so-called long non-coding RNA. Some of these non-coding RNA play fundamental roles in cellular identity, cell development and cancer progression. They are now widely studied in many organisms to understand their function. This book reviews this expanding field of research and present the broad functional diversities of those molecules and their putative fundamental and therapeutic roles and develops the recent history of non-coding RNA, their very much debated classification and how they raise a formidable interest for developmental and tumorigenesis biology. Using classical examples and an extensive bibliography, the book illustrates the most studied and attractive examples of these long non-coding RNA, how they interface with epigenetics, genome integrity and expression and what are the current models of their regulatory mechanisms. - This book offers a large review about the long non-coding RNA - It presents the broad functional diversities of those molecules - It presents pioneer works from the field - Provides a comprehensive review of the field - Presents fundamental and therapeutic interests
The growth of human population has increased the demand for improved yield and quality of crops and horticultural plants. However, plant productivity continues to be threatened by stresses such as heat, cold, drought, heavy metals, UV radiations, bacterial and fungal pathogens, and insect pests. Long noncoding RNAs are associated with various developmental pathways, regulatory systems, abiotic and biotic stress responses and signaling, and can provide an alternative strategy for stress management in plants. Long Noncoding RNAs in Plants: Roles in development and stress provides the most recent advances in LncRNAs, including identification, characterization, and their potential applications and uses. Introductory chapters include the basic features and brief history of development of lncRNAs studies in plants. The book then provides the knowledge about the lncRNAs in various important agricultural and horticultural crops such as cereals, legumes, fruits, vegetables, and fiber crop cotton, and their roles and applications in abiotic and biotic stress management. - Includes the latest advances and research in long noncoding RNAs in plants - Provides alternative strategies for abiotic and biotic stress management in horticultural plants and agricultural crops - Focuses on the application and uses of long noncoding RNAs
The first of its kind, this reference gives a comprehensive but concise introduction to epigenetics before covering the many interactions between hormone regulation and epigenetics at all levels. The contents are very well structured with no overlaps between chapters, and each one features supplementary material for use in presentations. Throughout, major emphasis is placed on pathological conditions, aiming at the many physiologists and developmental biologists who are familiar with the importance and mechanisms of hormone regulation but have a limited background in epigenetics.
This volume focuses on various approaches to studying long non-coding RNAs (lncRNAs), including techniques for finding lncRNAs, localization, and observing their functions. The chapters in this book cover how to catalog lncRNAs in various plant species; determining subcellular localization; protein interactions; structures; and RNA modifications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and innovative, Plant Long Non-Coding RNAs: Methods and Protocols is a valuable resource that aids researchers in understanding the functions of lncRNAs in different plant species, and helps them explore currently uncharted facets of plant biology.
RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field
Epigenetics and Metabolomics, a new volume in the Translational Epigenetics series, offers a synthesized discussion of epigenetic control of metabolic activity, and systems-based approaches for better understanding these mechanisms. Over a dozen chapter authors provide an overview of epigenetics in translational medicine and metabolomics techniques, followed by analyses of epigenetic and metabolomic linkage mechanisms likely to result in effective identification of disease biomarkers, as well as new therapies targeting the removal of the inappropriate epigenetic alterations. Epigenetic interventions in cancer, brain damage, and neuroendocrine disease, among other disorders, are discussed in-depth, with an emphasis on exploring next steps for clinical translation and personalized healthcare. - Offers a synthesized discussion of epigenetic regulation of metabolic activity and systems-based approaches to power new research - Discusses epigenetic control of metabolic pathways and possible therapeutic targets for cancer, neurodegenerative, and neuroendocrine diseases, among others - Provides guidance in epigenomics and metabolomic research methodology
The discovery of microRNAs and its role as gene expression regulators in human carcinogenesis represents one of the most important scientific achievements of the last decade. More recently, other non-coding RNAs have been discovered and its implications in cancer are emerging as well, suggesting a broader than anticipated involvement of the non-coding genome in cancer. Moreover, completely new and unexpected functions for microRNAs are being revealed, leading to the identification of new anticancer molecular targets. This book represents a comprehensive guide on non-coding RNAs and cancer, spanning from its role as cancer biomarkers, to providing the most useful bioinformatic tools, to presenting some of the most relevant discoveries, which indicates how these fascinating molecules act as fine orchestrators of cancer biology.
Computational Non-coding RNA Biology is a resource for the computation of non-coding RNAs. The book covers computational methods for the identification and quantification of non-coding RNAs, including miRNAs, tasiRNAs, phasiRNAs, lariat originated circRNAs and back-spliced circRNAs, the identification of miRNA/siRNA targets, and the identification of mutations and editing sites in miRNAs. The book introduces basic ideas of computational methods, along with their detailed computational steps, a critical component in the development of high throughput sequencing technologies for identifying different classes of non-coding RNAs and predicting the possible functions of these molecules. Finding, quantifying, and visualizing non-coding RNAs from high throughput sequencing datasets at high volume is complex. Therefore, it is usually possible for biologists to complete all of the necessary steps for analysis. - Presents a comprehensive resource of computational methods for the identification and quantification of non-coding RNAs - Introduces 23 practical computational pipelines for various topics of non-coding RNAs - Provides a guide to assist biologists and other researchers dealing with complex datasets - Introduces basic computational methods and provides guidelines for their replication by researchers - Offers a solution to researchers approaching large and complex sequencing datasets
This volume presents techniques needed for the study of long non-coding RNAs (lncRNAs) in cancer from their identification to functional characterization. Chapters guide readers through identification of lncRNA expression signatures in cancer tissue or liquid biopsies by RNAseq, single Cell RNAseq, Phospho RNAseq or Nanopore Sequencing techniques; validation of lncRNA signatures by Real time PCR, digital PCR or in situ hybridization; and functional analysis by siRNA or CRISPR based methods for lncRNA silencing or overexpression. Lipid based nanoparticles for delivery of siRNAs in vivo, lncRNA-protein interactions, viral lncRNAs and circRNAs are also treated in this volume. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and practical, Long Non-Coding RNAs in Cancer aims to provide a collection of laboratory protocols, bioinformatic pipelines, and review chapters to further research in this vital field.