Download Free Long Distance Propagation Of Hf Radio Waves Book in PDF and EPUB Free Download. You can read online Long Distance Propagation Of Hf Radio Waves and write the review.

The study of very long-distance and around-the-world propagation of HF radio waves becomes more urgent in connection with the problems of long distance ground-based radio communications, communications with space crafts and satellites, satellite-to-satellite communications, around-the-world radar scanning, around-the-world sounding of the ionosphere, etc. At pre sent, these investigations have acquired particular interest because transmit ters which make it possible to intentionally modify the ionospheric properties by powerful radio waves have become available. In the case of radio wave propagation over comparatively small distances (about 3000 - 5000 km, one - two hops), in a first approximation, the iono sphere can be considered homogeneous in the horizontal direction. The radio wave propagation theory in a horizontally-homogeneous, i. e. , spherically symmetric ionosphere was developed with sufficient completeness as early as in the 1920-1940's by Appleton, Ratcliffe, Beynon, Booker, Martyn, and others. This theory is presented in detail in the well-known monographs by Ginzburg (1967), Bremmer (1946), and Budden (1961). Based on this theory, detailed methods for the calculation of radio paths, determination of field amplitude, and interpretation of vertical and oblique ionograms have been developed. All these methods are well-known and widely used in practice, see monographs by Al'pert (1974), Shchukin (1940), and Davies (1969). An altogether different situation takes place in the case of very long-dis tance multihop and around-the-world propagation.
Wideband HF. Book jacket.
This introductory text replaces two earlier publications (Davies 1965, 1969). Among the topics: characteristics of waves and plasma, the solar-terrestrial system, the Appleton formula, radio soundings of the ionosphere, morphology of the ionosphere, oblique propagation, importance of amplitude and phase, earth-space propagation. Annotation copyrighted by Book News, Inc., Portland, OR
An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.
This book has been fully updated to reflect the latest developments in the field of radio communications. This book introduces the basic concepts and mechanisms of radiowave propagation engineering in both the troposphere and ionosphere, and includes greater emphasis on the needs of digital technologies and new kinds of radio systems.
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagnetic waves from planar stratified media. Other chapters consider the oblique reflection of plane electromagnetic waves from a continuously stratified medium. This book discusses as well the fundamental theory of wave propagation around a sphere. The final chapter deals with the theory of propagation in a spherically stratified medium. This book is a valuable resource for electrical engineers, scientists, and research workers.