Download Free Long Afterglow Phosphorescent Materials Book in PDF and EPUB Free Download. You can read online Long Afterglow Phosphorescent Materials and write the review.

This book presents the fundamental scientific principles of long afterglow phosphorescent materials and a comprehensive review of both commercialized afterglow materials and the latest advances in the development of novel long afterglow materials. It is designed to supply much needed information about inorganic and organic afterglow materials, including detailed treatment of structure, classification, preparation techniques, characterization, surface modification chemistry, and optical measurements. Special attention is given to technological applications such as photovoltaics, photocatalytic reactions, and lighting and molecular sensing. Although traditional long afterglow phosphors have been widely investigated and used in industry, and significant efforts have recently been made toward the use of these materials for bioimaging, there is to date no scientific monograph dedicated to afterglow materials. This book not only provides a beginners’ guide to the fundamentals of afterglow luminescence and materials, but also gives skilled researchers essential updates on emerging trends and efforts. The work provides a special focus on organic afterglow materials, which offer several advantages such as light-weight, flexible, and wide varieties; mild preparation conditions; and good processability. This book is aimed at postgraduate students, researchers, and technologists who are engaged in the synthesis, development, and commercialization of afterglow materials. It represents essential reading on interdisciplinary frontiers in the materials science, chemistry, photophysics, and biological aspects of afterglow materials.
Persistent Phosphors: From Fundamentals to Applications provides an introduction to the key synthesis methods, characterization methods, physical mechanisms, and applications of this important luminescent materials system. The book covers basic persistent phosphorescence, introducing concepts such as emission, luminescence, phosphorescence, persistent phosphorescence and the development of persistent phosphors. Then, synthesis methods are reviewed and the connections between synthesis methods and improved materials properties are discussed. Characterization methods to investigate the trapping and de-trapping mechanism are also presented. Other sections cover the theoretical framework and energy band engineering models and materials with a focus on activators, hosts, emission bands and excitation bands. Finally, the most relevant applications of persistent phosphors are included for use in displays, safety signs, bio-labels and energy. Persistent Phosphors is an invaluable reference for materials scientists and engineers in academia and R&D. It is a key resource for chemists and physicists. - Presents characterization techniques to reveal the photophysical and photochemical properties of defects for this important category of luminescent materials - Discusses the structural role of defects in polycrystals and the capture-storing-migration-release progress of excited carriers - Demonstrates the synthesis routes and potential applications for persistent phosphor materials
Spectroscopy of Lanthanide Doped Oxide Materials provides a comprehensive overview on the most essential characterization techniques of these materials, along with their key applications. The book describes the application of optical spectroscopy of lanthanides doped inorganic phosphor hosts and gives information about their structure and morphology, binding energies, energy of transition and band gap. Also discussed are the properties and applications of rare earth doped inorganic materials and the barriers and potential solutions to enable the commercial realization of phosphors in important applications. The book reviews key information for those entering the field of phosphor research, along with the fundamental knowledge of the properties of transition series elements under UV/Visible/NIR light exposer. Low-cost materials methods to synthesize the materials and spectroscopic characterization methods are also detailed. - Reviews the barriers and potential solutions to enable commercial realization of inorganic phosphors - Discusses low-cost material methods to synthesize and characterize lanthanide doped oxide materials - Provides readers with a comprehensive overview on key properties for the most relevant applications, such as lighting and display, energy conversion and solar cell devices
A benchmark publication, the first edition of the Phosphor Handbook set the standard for references in this field. Completely revised and updated, this second edition explores new and emerging fields such as nanophosphors, nanomaterials, UV phosphors, quantum cutters, plasma display phosphors, sol-gel and other wet phosphor preparation techniques, preparation through combustion, bioluminescence phosphors and devices, and new laser materials such as OLED. It also contains new chapters on the applications of phosphors in solid state lighting, photoionization of luminescent centers in insulating phosphors, and recent developments in halide-based scintillators. The handbook provides a comprehensive description of phosphors with an emphasis on practical phosphors and their uses in various kinds of technological applications. It covers the fundamentals, namely the basic principles of luminescence, the principle phosphor materials, and their optical properties. The authors describe phosphors used in lamps, cathode-ray tubes, x-ray, and ionizing radiation detection. They cover common measurement methodology used to characterize phosphor properties, discuss a number of related items, and conclude with the history of phosphor technology and industry.
This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies. This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.
Selected, peer reviewed papers from the 2013 International Conference on Mechatronics and Intelligent Materials (MIM 2013), May 18-19, 2013, XiShuangBanNa, China
Modern Luminescence: From Fundamental Concepts to Materials and Applications, Volume One, Concepts and Luminescence is a multivolume work that reviews the fundamental principles, properties and applications of luminescent materials. Topics addressed include key concepts of luminescence, with a focus on important characterization techniques to understand a wide category of luminescent materials. The most relevant luminescent materials, such as transition metals, rare-earth materials, actinide-based materials, and organic materials are discussed, along with emerging applications of luminescent materials in biomedicine, solid state devices, and the development of hybrid materials. This book is an important introduction to the underlying scientific concepts needed to understand luminescence, such as atomic and molecular physics and chemistry. Other topics explored cover the latest advances in materials characterization methods, such as Raman spectroscopy, ultrafast spectroscopy, nonlinear spectroscopy, and more. Finally, there is a focus on the materials physics of nanophotonics. - Includes an overview of the underlying scientific concepts of luminescence, such as quantum theory, physics and historical context - Provides the most important materials characterization methods, including Raman spectroscopy, nonlinear spectroscopy, and more for a wide range of luminescent materials - Introduces nanophotonics dynamics that are important to keep in mind when designing materials and devices
Functional Materials from Carbon, Inorganic and Organic Sources: Methods and Advances describes the basic principles, mechanisms and theoretical background of functional materials. Sections cover Carbon-based functional materials, Inorganic functional materials for renewable and sustainable energy applications, and Organic and biological based functional materials. Applications such as energy storage and conversion, electronic and photonics devices, and in medicine are also explored. Sections dive into photovoltaic devices, light emitting devices, energy storage materials and quantum dot devices, solar cell fundamentals and devices, perovskite materials and ceramic thin films. Final sections emphasize green approaches to synthesis in semiconductor nanoparticles, quinolone complexes, biomaterials and biopolymers. - Introduces the reader to a wide range of the most relevant functional materials, including carbon-based materials, inorganic materials for energy applications, and organic and biological based materials - Reviews the synthesis and characterization methods used to create, optimize and analyze functional materials properties - Discusses the use of functional materials to enable emerging technologies, along with remaining barriers to commercial adoption and opportunities
Nanostructured Materials for Visible Light Photocatalysis describes the various methods of synthesizing different classes of nanostructured materials that are used as photocatalysts for the degradation of organic hazardous dyes under visible light irradiation. The first three chapters include a general introduction, basic principles, mechanisms, and synthesis methods of nanomaterials for visible light photocatalysis. Recent advances in carbon, bismuth series, transition metal oxide and chalcogenides-based nanostructured materials for visible light photocatalysis are discussed. Later chapters describe the role of phosphides, nitrides, and rare earth-based nanostructured-based materials in visible light photocatalysis, as well as the characteristics, synthesis, and fabrication of photocatalysts. The role of doping, composites, defects, different facets, morphology of nanostructured materials and green technology for efficient dye removal under visible-light irradiation are also explored. Other topics covered include large-scale production of nanostructured materials, the challenges in present photocatalytic research, the future scope of nanostructured materials regarding environmental hazard remediation under visible light, and solar light harvesting. This book is a valuable reference to researchers and enables them to learn more about designing advanced nanostructured materials for wastewater treatment and visible-light irradiation. - Covers all the recent developments of nanostructured photocatalytic materials - Provides a clear overview of the mechanism of visible light photocatalysis and the controlled synthesis of nanostructured materials - Assesses the major challenges of creating visible light photocatalysis systems at the nanoscale
In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today’s research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial processing, microstructure development, and the resulting material properties. The Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials provides the recent advancements in the lightweight mat materials processing, manufacturing, and characterization. This book identifies the need for modern tools and techniques for designing lightweight materials and addresses multidisciplinary approaches for applying their use. Covering topics such as numerical optimization, fatigue characterization, and process evaluation, this text is an essential resource for materials engineers, manufacturers, practitioners, engineers, academicians, chief research officers, researchers, students, and vice presidents of research in government, industry, and academia.