Download Free Logical Studies Of Paraconsistent Reasoning In Science And Mathematics Book in PDF and EPUB Free Download. You can read online Logical Studies Of Paraconsistent Reasoning In Science And Mathematics and write the review.

This book covers work written by leading scholars from different schools within the research area of paraconsistency. The authors critically investigate how contemporary paraconsistent logics can be used to better understand human reasoning in science and mathematics. Offering a variety of perspectives, they shed a new light on the question of whether paraconsistent logics can function as the underlying logics of inconsistent but useful scientific and mathematical theories. The great variety of paraconsistent logics gives rise to various, interrelated questions, such as what are the desiderata a paraconsistent logic should satisfy, is there prospect of a universal approach to paraconsistent reasoning with axiomatic theories, and to what extent is reasoning about sets structurally analogous to reasoning about truth. Furthermore, the authors consider paraconsistent logic’s status as either a normative or descriptive discipline (or one which falls in between) and which inconsistent but non-trivial axiomatic theories are well understood by which types of paraconsistent approaches. This volume addresses such questions from different perspectives in order to (i) obtain a representative overview of the state of the art in the philosophical debate on paraconsistency, (ii) come up with fresh ideas for the future of paraconsistency, and most importantly (iii) provide paraconsistent logic with a stronger philosophical foundation, taking into account the developments within the different schools of paraconsistency.
Paraconsistent logics are logics which allow solid deductive reasoning under contradictions by offering a mathematical and philosophical support to contradictory yet non-trivial theories. Due to its role in models of scientific reasoning and to its philosophical implications, as well as to its connections to topics such as abduction, automated reasoning, logic programming, and belief revision, paraconsistency has becoming a fast growing area. During the III World Congress on Paraconsistency (WCP3) held in Toulouse, France, in July, 2003, it became apparent that there is a need for a Handbook covering the most recent results on several aspects of paraconsistent logic, including philosophical debates on paraconsistency and its connections to philosophy of language, argumentation theory, computer science, information theory, and artificial intelligence. This book is a basic tool for those who want to know more about paraconsistent logic, its history and philosophy, the various systems of paraconsistent logic and their applications. The present volume is edited by Jean-Yves Beziau, Walter Carnielli and Dov Gabbay, expert logicians versed in a variety of logics.
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more "big picture" ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics.
Paraconsistent logic makes it possible to study inconsistent theories in a coherent way. From its modern start in the mid-20th century, paraconsistency was intended for use in mathematics, providing a rigorous framework for describing abstract objects and structures where some contradictions are allowed, without collapse into incoherence. Over the past decades, this initiative has evolved into an area of non-classical mathematics known as inconsistent or paraconsistent mathematics. This Element provides a selective introductory survey of this research program, distinguishing between `moderate' and `radical' approaches. The emphasis is on philosophical issues and future challenges.
This book is a collection of contributions honouring Arnon Avron’s seminal work on the semantics and proof theory of non-classical logics. It includes presentations of advanced work by some of the most esteemed scholars working on semantic and proof-theoretical aspects of computer science logic. Topics in this book include frameworks for paraconsistent reasoning, foundations of relevance logics, analysis and characterizations of modal logics and fuzzy logics, hypersequent calculi and their properties, non-deterministic semantics, algebraic structures for many-valued logics, and representations of the mechanization of mathematics. Avron’s foundational and pioneering contributions have been widely acknowledged and adopted by the scientific community. His research interests are very broad, spanning over proof theory, automated reasoning, non-classical logics, foundations of mathematics, and applications of logic in computer science and artificial intelligence. This is clearly reflected by the diversity of topics discussed in the chapters included in this book, all of which directly relate to Avron’s past and present works. This book is of interest to computer scientists and scholars of formal logic.
The present book discusses all aspects of paraconsistent logic, including the latest findings, and its various systems. It includes papers by leading international researchers, which address the subject in many different ways: development of abstract paraconsistent systems and new theorems about them; studies of the connections between these systems and other non-classical logics, such as non-monotonic, many-valued, relevant, paracomplete and fuzzy logics; philosophical interpretations of these constructions; and applications to other sciences, in particular quantum physics and mathematics. Reasoning with contradictions is the challenge of paraconsistent logic. The book will be of interest to graduate students and researchers working in mathematical logic, computer science, philosophical logic, linguistics and physics.
The SAGE Encyclopedia of Theory is a landmark work that examines theory in general and the broad split between the "hard" and "soft" sciences, a split that is being re-examined as approaches to scientific questions become increasingly multidisciplinary.
This book presents the state of the art in the fields of formal logic pioneered by Graham Priest. It includes advanced technical work on the model and proof theories of paraconsistent logic, in contributions from top scholars in the field. Graham Priest’s research has had a considerable influence on the field of philosophical logic, especially with respect to the themes of dialetheism—the thesis that there exist true but inconsistent sentences—and paraconsistency—an account of deduction in which contradictory premises do not entail the truth of arbitrary sentences. Priest’s work has regularly challenged researchers to reappraise many assumptions about rationality, ontology, and truth. This book collects original research by some of the most esteemed scholars working in philosophical logic, whose contributions explore and appraise Priest’s work on logical approaches to problems in philosophy, linguistics, computation, and mathematics. They provide fresh analyses, critiques, and applications of Priest’s work and attest to its continued relevance and topicality. The book also includes Priest’s responses to the contributors, providing a further layer to the development of these themes .
The refereed proceedings of the 7th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2003, held in Aalborg, Denmark in July 2003. The 47 revised full papers presented together with 2 invited survey articles were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on foundations of uncertainty concepts, Bayesian networks, algorithms for uncertainty inference, learning, decision graphs, belief functions, fuzzy sets, possibility theory, default reasoning, belief revision and inconsistency handling, logics, and tools.