Download Free Logical Control Of Complex Resource Allocation Systems Book in PDF and EPUB Free Download. You can read online Logical Control Of Complex Resource Allocation Systems and write the review.

Logical Control of Complex Resource Allocation Systems provides a comprehensive tutorial on solutions to supervisory control problems in stochastic network theory and applications.
The problem addressed in this document concerns the coordinated allocation of a finite set of reusable resources to a set of concurrently running processes. These processes execute in a staged manner, and each stage requires a different subset of the system resources for its support. Furthermore, processes will hold upon the resources currently allocated to them until they will secure the necessary resources for their next processing stage. Such resource allocation dynamics currently arise in the context of many flexibly automated operations: from the workflow that takes place in various production shop floors and certain internet-supported platforms that seek to automate various service operations; to the traffic coordination in guidepath-based transport systems like industrial monorail and urban railway systems; to the resource allocation that takes place in the context of the contemporary multi-core computer architectures. From a theoretical standpoint, the resource allocation problems that are abstracted from the aforementioned applications, correspond to the problem of scheduling a stochastic network with blocking and deadlocking effects. This is an area of the modern scheduling theory with very limited results. To a large extent, this lack of results is due to the intricacies that arise from the blocking, and especially the deadlocking effects that take place in these networks, and prevents a tractable analysis of these problems through the classical modeling frameworks. Hence, the departing thesis of the work that is presented in this document, is the decomposition of the aforementioned scheduling problems to (i) a supervisory control problem that will seek to prevent the deadlock formation in the underlying resource allocation dynamics, and (ii) a scheduling problem that will be formulated on the admissible subspace to be defined by the adopted supervisory control policy. Each of these two subproblems can be further structured and addressed using some formal modeling frameworks borrowed, respectively, from the qualitative and the quantitative theory of Discrete Event Systems. At the same time, the above two subproblems possess considerable special structure that can be leveraged towards their effective and efficient solution. The presented material provides a comprehensive tutorial exposition of the current achievements of the corresponding research community with respect to the first of the two subproblems mentioned above. As it will be revealed by this exposition, the corresponding results are pretty rich in their theoretical developments and practically potent. At the same time, it is expected and hoped that the resulting awareness regarding the aforementioned results will also set the stage for undertaking a more orchestrated effort on the second of the two subproblems mentioned above.
Real-Time Management of Resource Allocation Systems focuses on the problem of managing the resource allocation taking place within the operational context of many contemporary technological applications, including flexibly automated production systems, automated railway and/or monorail transportation systems, electronic workflow management systems, and business transaction supporting systems. A distinct trait of all these applications is that they limit the role of the human element to remote high-level supervision, while placing the burden of the real-time monitoring and coordination of the ongoing activity upon a computerized control system. Hence, any applicable control paradigm must address not only the issues of throughput maximization, work-in-process inventory reduction, and delay and cost minimization, that have been the typical concerns for past studies on resource allocation, but it must also guarantee the operational correctness and the behavioral consistency of the underlying automated system. The resulting problem is rather novel for the developers of these systems, since, in the past, many of its facets were left to the jurisdiction of the present human intelligence. It is also complex, due to the high levels of choice – otherwise known as flexibility – inherent in the operation of these environments.
Presents strategies with reachability graph analysis for optimizing resource allocation systems Supervisory Control and Scheduling of Resource Allocation Systems offers an important guide to Petri net (PN) models and methods for supervisory control and system scheduling of resource allocation systems (RASs). Resource allocation systems are common in automated manufacturing systems, project management systems, cloud data centers, and software engineering systems. The authors—two experts on the topic—present a definition, techniques, models, and state-of-the art applications of supervisory control and scheduling problems. The book introduces the basic concepts and research background on resource allocation systems and Petri nets. The authors then focus on the deadlock-free supervisor synthesis for RASs using Petri nets. The book also investigates the heuristic scheduling of RASs based on timed Petri nets. Conclusions and open problems are provided in the last section of the book. This important book: Includes multiple methods for supervisory control and scheduling with reachability graphs, and provides illustrative examples Reveals how to accelerate the supervisory controller design and system scheduling of RASs based on PN reachability graphs, with optimal or near-optimal results Highlights both solution quality and computational speed in RAS deadlock handling and system scheduling Written for researchers, engineers, scientists, and professionals in system planning and control, engineering, operation, and management, Supervisory Control and Scheduling of Resource Allocation Systems provides an essential guide to the supervisory control and scheduling of resource allocation systems (RASs) using Petri net reachability graphs, which allow for multiple resource acquisitions and flexible routings.
Discrete-Time and Discrete-Space Dynamical Systems provides a systematic characterization of the similarities and differences of several types of discrete-time and discrete-space dynamical systems, including: Boolean control networks; nondeterministic finite-transition systems; finite automata; labelled Petri nets; and cellular automata. The book's perspective is primarily based on topological properties though it also employs semitensor-product and graph-theoretic methods where appropriate. It presents a series of fundamental results: invertibility, observability, detectability, reversiblity, etc., with applications to systems biology. Academic researchers with backgrounds in applied mathematics, engineering or computer science and practising engineers working with discrete-time and discrete-space systems will find this book a helpful source of new understanding for this increasingly important class of systems. The basic results to be found within are of fundamental importance for further study of related problems such as automated synthesis and safety control in cyber-physical systems using formal methods.
Advanced Science and Technology, Advanced Communication and Networking, Information Security and Assurance, Ubiquitous Computing and Multimedia Appli- tions are conferences that attract many academic and industry professionals. The goal of these co-located conferences is to bring together researchers from academia and industry as well as practitioners to share ideas, problems and solutions relating to the multifaceted aspects of advanced science and technology, advanced communication and networking, information security and assurance, ubiquitous computing and m- timedia applications. This co-located event included the following conferences: AST 2010 (The second International Conference on Advanced Science and Technology), ACN 2010 (The second International Conference on Advanced Communication and Networking), ISA 2010 (The 4th International Conference on Information Security and Assurance) and UCMA 2010 (The 2010 International Conference on Ubiquitous Computing and Multimedia Applications). We would like to express our gratitude to all of the authors of submitted papers and to all attendees, for their contributions and participation. We believe in the need for continuing this undertaking in the future. We acknowledge the great effort of all the Chairs and the members of advisory boards and Program Committees of the above-listed events, who selected 15% of over 1,000 submissions, following a rigorous peer-review process. Special thanks go to SERSC (Science & Engineering Research Support soCiety) for supporting these - located conferences.
The research of holonic and agent-based systems is developing very rapidly. The community around this R&D topic is also growing fast - despite the fact that the real-life practical implementations of such systems are still surprisingly rare. H- ever, the managers in different branches of industry feel that the holonic and agent-based systems represent the only way of managing and controlling very c- plex, highly distributed systems exploring vast volumes of accumulated knowledge. The relevant research and development activities gain more and more visible support from both industry as well as public sectors. Quite naturally, the number of scientific events aimed at the subject field is also growing rapidly. We see new lines of conf- ences like INDIN, we observe a strong focus of the already well-established conferences, e. g. , INCOM or ETFA, being shifted toward holonic and agent-based manufacturing systems. We see an increased interest of the IEEE System, Man and Cybernetics Society, especially its Technical Committee on Distributed Intelligent Systems which leverages the experience gathered by the members of the former Ho- nic Manufacuting Systems (HMS) consortium. We see a clear orientation of the IEEE SMC Transactions, part C, toward applications of agent-oriented solutions. The same is true of the International Journal on Autonomous Agents and Multi-Agent Systems (JAAMAS). This is a really good sign of the increasing importance of the field.