Download Free Logic Synthesis For Vlsi Based Combined Finite State Machines Book in PDF and EPUB Free Download. You can read online Logic Synthesis For Vlsi Based Combined Finite State Machines and write the review.

The book is devoted to design and optimization of control units represented by combined finite state machines (CFSMs). The CFSMs combine features of both Mealy and Moore FSMs. Having states of Moore FSM, they produce output signals of both Mealy and Moore types. To optimize the circuits of CFSMs, we propose to use optimization methods targeting both Mealy and Moore FSMs. The book contains some original synthesis and optimization methods targeting hardware reduction in VLSI-based CFSM circuits. These methods take into account the peculiarities of both a CFSM model and a VLSI chip in use. The optimization is achieved due to combining classical optimization methods with new methods proposed in this book. These new methods are a mixed encoding of collections of microoperations and a twofold state assignment in CFSMs. All proposed methods target reducing the numbers of arguments in systems of Boolean functions representing CFSM circuits. Also, we propose to use classes of pseudoequivalent states of Moore FSMs to reduce the number of product terms in these systems.The book includes a lot of examples which contributes to a better understanding of the features of the synthesis methods under consideration. This is the first book entirely devoted to the problems associated with synthesis and optimization of VLSI-based CFSMs. We hope that the book will be interesting and useful for students and PhD students in the area of Computer Science, as well as for designers of various digital systems. We think that proposed CFSM models enlarge the class of models applied for implementation of control units with modern VLSI chips.
The book is devoted to design and optimization of control units represented by combined finite state machines (CFSMs). The CFSMs combine features of both Mealy and Moore FSMs. Having states of Moore FSM, they produce output signals of both Mealy and Moore types. To optimize the circuits of CFSMs, we propose to use optimization methods targeting both Mealy and Moore FSMs. The book contains some original synthesis and optimization methods targeting hardware reduction in VLSI-based CFSM circuits. These methods take into account the peculiarities of both a CFSM model and a VLSI chip in use. The optimization is achieved due to combining classical optimization methods with new methods proposed in this book. These new methods are a mixed encoding of collections of microoperations and a twofold state assignment in CFSMs. All proposed methods target reducing the numbers of arguments in systems of Boolean functions representing CFSM circuits. Also, we propose to use classes of pseudoequivalent states of Moore FSMs to reduce the number of product terms in these systems.The book includes a lot of examples which contributes to a better understanding of the features of the synthesis methods under consideration. This is the first book entirely devoted to the problems associated with synthesis and optimization of VLSI-based CFSMs. We hope that the book will be interesting and useful for students and PhD students in the area of Computer Science, as well as for designers of various digital systems. We think that proposed CFSM models enlarge the class of models applied for implementation of control units with modern VLSI chips. .
This book is a monograph devoted to logic synthesis and optimization for CPLDs. CPLDs' macrocell can also be interpreted as programmable AND-fixed OR structure, well known as PAL-based structure. The question is: what should be done when the number of implicants representing function exceeds the number of product terms available in a logic block. The answer is ... in the book. Logic synthesis and optimization methods dedicated for PAL-based structures are proposed. The methods strive to find the optimum fit for the combinational logic and finite state machines to the structure of the logic device and aim at area and speed optimization. The theoretical background and complete strategies are richly illustrated with examples and figures.
Logic Synthesis for Low Power VLSI Designs presents a systematic and comprehensive treatment of power modeling and optimization at the logic level. More precisely, this book provides a detailed presentation of methodologies, algorithms and CAD tools for power modeling, estimation and analysis, synthesis and optimization at the logic level. Logic Synthesis for Low Power VLSI Designs contains detailed descriptions of technology-dependent logic transformations and optimizations, technology decomposition and mapping, and post-mapping structural optimization techniques for low power. It also emphasizes the trade-off techniques for two-level and multi-level logic circuits that involve power dissipation and circuit speed, in the hope that the readers can better understand the issues and ways of achieving their power dissipation goal while meeting the timing constraints. Logic Synthesis for Low Power VLSI Designs is written for VLSI design engineers, CAD professionals, and students who have had a basic knowledge of CMOS digital design and logic synthesis.
This book covers selected topics of automated logic synthesis dedicated to FPGAs. The authors focused on two main problems: decomposition of the multioutput functions and technology mapping. Additionally, the idea of using binary decision diagrams (BDD) in these processes was presented. The book is a scientific monograph summarizing the authors’ many years of research. As a result, it contains a large number of experimental results, which makes it a valuable source for other researchers. The book has a significant didactic value. Its arrangement allows for a gradual transition from basic things (e.g., description of logic functions) to much more complex issues. This approach allows less advanced readers to better understand the described problems. In addition, the authors made sure that the issues described in the book were supported by practical examples, thanks to which the reader can independently analyze even the most complex problems described in the book.
Synthesis of Finite State Machines: Logic Optimization is the second in a set of two monographs devoted to the synthesis of Finite State Machines (FSMs). The first volume, Synthesis of Finite State Machines: Functional Optimization, addresses functional optimization, whereas this one addresses logic optimization. The result of functional optimization is a symbolic description of an FSM which represents a sequential function chosen from a collection of permissible candidates. Logic optimization is the body of techniques for converting a symbolic description of an FSM into a hardware implementation. The mapping of a given symbolic representation into a two-valued logic implementation is called state encoding (or state assignment) and it impacts heavily area, speed, testability and power consumption of the realized circuit. The first part of the book introduces the relevant background, presents results previously scattered in the literature on the computational complexity of encoding problems, and surveys in depth old and new approaches to encoding in logic synthesis. The second part of the book presents two main results about symbolic minimization; a new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame to check encodability of encoding constraints and find codes of minimum length that satisfy them. The third part of the book introduces generalized prime implicants (GPIs), which are the counterpart, in symbolic minimization of two-level logic, to prime implicants in two-valued two-level minimization. GPIs enable the design of an exact procedure for two-level symbolic minimization, based on a covering step which is complicated by the need to guarantee encodability of the final cover. A new efficient algorithm to verify encodability of a selected cover is presented. If a cover is not encodable, it is shown how to augment it minimally until an encodable superset of GPIs is determined. To handle encodability the authors have extended the frame to satisfy encoding constraints presented in the second part. The covering problems generated in the minimization of GPIs tend to be very large. Recently large covering problems have been attacked successfully by representing the covering table with binary decision diagrams (BDD). In the fourth part of the book the authors introduce such techniques and extend them to the case of the implicit minimization of GPIs, where the encodability and augmentation steps are also performed implicitly. Synthesis of Finite State Machines: Logic Optimization will be of interest to researchers and professional engineers who work in the area of computer-aided design of integrated circuits.
This book discusses control units represented by the model of a finite state machine (FSM). It contains various original methods and takes into account the peculiarities of field-programmable gate arrays (FPGA) chips and a FSM model. It shows that one of the peculiarities of FPGA chips is the existence of embedded memory blocks (EMB). The book is devoted to the solution of problems of logic synthesis and reduction of hardware amount in control units. The book will be interesting and useful for researchers and PhD students in the area of Electrical Engineering and Computer Science, as well as for designers of modern digital systems.
This book constitutes the proceedings of the 15th IFIP TC8 International Conference on Computer Information Systems and Industrial Management, CISIM 2016, held in Vilnius, Lithuania, in September 2016. The 63 regular papers presented together with 1 inivted paper and 5 keynotes in this volume were carefully reviewed and selected from about 89 submissions. The main topics covered are rough set methods for big data analytics; images, visualization, classification; optimization, tuning; scheduling in manufacturing and other applications; algorithms; decisions; intelligent distributed systems; and biometrics, identification, security.
The book is composed of two parts. The first part introduces the concepts of the design of digital systems using contemporary field-programmable gate arrays (FPGAs). Various design techniques are discussed and illustrated by examples. The operation and effectiveness of these techniques is demonstrated through experiments that use relatively cheap prototyping boards that are widely available. The book begins with easily understandable introductory sections, continues with commonly used digital circuits, and then gradually extends to more advanced topics. The advanced topics include novel techniques where parallelism is applied extensively. These techniques involve not only core reconfigurable logical elements, but also use embedded blocks such as memories and digital signal processing slices and interactions with general-purpose and application-specific computing systems. Fully synthesizable specifications are provided in a hardware-description language (VHDL) and are ready to be tested and incorporated in engineering designs. A number of practical applications are discussed from areas such as data processing and vector-based computations (e.g. Hamming weight counters/comparators). The second part of the book covers the more theoretical aspects of finite state machine synthesis with the main objective of reducing basic FPGA resources, minimizing delays and achieving greater optimization of circuits and systems.
This book is devoted to the logic synthesis of field programmable gate array (FPGA)-based circuits of Mealy finite state machines (FSM). Three new methods of state assignment are proposed, which allows obtaining FSM circuits required minimum amount of internal chip resources. Logic Synthesis for FPGA-Based Mealy Finite State Machines: Structural Decomposition in Logic Design contains several original synthesis and optimization methods based on the structural decomposition of FPGA-based FSM circuits developed by the authors. To optimize FSM circuits, the authors introduce the use of three methods of state assignment: twofold, extended, and composite. These methods allow for the creation of two- or three-level architectures of FSM circuits. The authors also demonstrate how the proposed methods, FSM architectures and synthesis methods can replace known solutions based on either functional decomposition or classical methods of structural decomposition. The authors also show how these architectures have regular systems of interconnections and demonstrate positive features compared to methods based on functional decomposition, including producing circuits with fewer elements that are faster and consume less power than their counterparts. The book includes experimental results proving the efficiency of the proposed solutions and compares the numbers in Look-up Tables (LUTs), showing the performance (maximum operating frequency) and power consumption for various methods of state assignment. The audience for this book is students, researchers, and engineers specializing in computer science/ engineering, electronics, and telecommunications. It will be especially useful for engineers working within the scope of algorithms, hardware-based software accelerators and control units, and systems based on the use of FPGAs.